Evaluate
\frac{1}{-x-2}
Expand
-\frac{1}{x+2}
Graph
Quiz
Polynomial
5 problems similar to:
\frac { 2 x - 4 } { 12 - 3 x ^ { 2 } } - \frac { 1 } { 3 x + 6 }
Share
Copied to clipboard
\frac{2\left(x-2\right)}{3\left(x-2\right)\left(-x-2\right)}-\frac{1}{3x+6}
Factor the expressions that are not already factored in \frac{2x-4}{12-3x^{2}}.
\frac{2}{3\left(-x-2\right)}-\frac{1}{3x+6}
Cancel out x-2 in both numerator and denominator.
\frac{2}{3\left(-x-2\right)}-\frac{1}{3\left(x+2\right)}
Factor 3x+6.
\frac{2\left(-1\right)}{3\left(x+2\right)}-\frac{1}{3\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(-x-2\right) and 3\left(x+2\right) is 3\left(x+2\right). Multiply \frac{2}{3\left(-x-2\right)} times \frac{-1}{-1}.
\frac{2\left(-1\right)-1}{3\left(x+2\right)}
Since \frac{2\left(-1\right)}{3\left(x+2\right)} and \frac{1}{3\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-2-1}{3\left(x+2\right)}
Do the multiplications in 2\left(-1\right)-1.
\frac{-3}{3\left(x+2\right)}
Do the calculations in -2-1.
\frac{-3}{3x+6}
Expand 3\left(x+2\right).
\frac{2\left(x-2\right)}{3\left(x-2\right)\left(-x-2\right)}-\frac{1}{3x+6}
Factor the expressions that are not already factored in \frac{2x-4}{12-3x^{2}}.
\frac{2}{3\left(-x-2\right)}-\frac{1}{3x+6}
Cancel out x-2 in both numerator and denominator.
\frac{2}{3\left(-x-2\right)}-\frac{1}{3\left(x+2\right)}
Factor 3x+6.
\frac{2\left(-1\right)}{3\left(x+2\right)}-\frac{1}{3\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(-x-2\right) and 3\left(x+2\right) is 3\left(x+2\right). Multiply \frac{2}{3\left(-x-2\right)} times \frac{-1}{-1}.
\frac{2\left(-1\right)-1}{3\left(x+2\right)}
Since \frac{2\left(-1\right)}{3\left(x+2\right)} and \frac{1}{3\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-2-1}{3\left(x+2\right)}
Do the multiplications in 2\left(-1\right)-1.
\frac{-3}{3\left(x+2\right)}
Do the calculations in -2-1.
\frac{-3}{3x+6}
Expand 3\left(x+2\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}