Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(2x-3\right)\left(x+3\right)}{\left(x+2\right)\left(x+3\right)}-\frac{x\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}+\frac{1}{x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+2 and x+3 is \left(x+2\right)\left(x+3\right). Multiply \frac{2x-3}{x+2} times \frac{x+3}{x+3}. Multiply \frac{x}{x+3} times \frac{x+2}{x+2}.
\frac{\left(2x-3\right)\left(x+3\right)-x\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}+\frac{1}{x}
Since \frac{\left(2x-3\right)\left(x+3\right)}{\left(x+2\right)\left(x+3\right)} and \frac{x\left(x+2\right)}{\left(x+2\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{2}+6x-3x-9-x^{2}-2x}{\left(x+2\right)\left(x+3\right)}+\frac{1}{x}
Do the multiplications in \left(2x-3\right)\left(x+3\right)-x\left(x+2\right).
\frac{x^{2}+x-9}{\left(x+2\right)\left(x+3\right)}+\frac{1}{x}
Combine like terms in 2x^{2}+6x-3x-9-x^{2}-2x.
\frac{\left(x^{2}+x-9\right)x}{x\left(x+2\right)\left(x+3\right)}+\frac{\left(x+2\right)\left(x+3\right)}{x\left(x+2\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+2\right)\left(x+3\right) and x is x\left(x+2\right)\left(x+3\right). Multiply \frac{x^{2}+x-9}{\left(x+2\right)\left(x+3\right)} times \frac{x}{x}. Multiply \frac{1}{x} times \frac{\left(x+2\right)\left(x+3\right)}{\left(x+2\right)\left(x+3\right)}.
\frac{\left(x^{2}+x-9\right)x+\left(x+2\right)\left(x+3\right)}{x\left(x+2\right)\left(x+3\right)}
Since \frac{\left(x^{2}+x-9\right)x}{x\left(x+2\right)\left(x+3\right)} and \frac{\left(x+2\right)\left(x+3\right)}{x\left(x+2\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{x^{3}+x^{2}-9x+x^{2}+3x+2x+6}{x\left(x+2\right)\left(x+3\right)}
Do the multiplications in \left(x^{2}+x-9\right)x+\left(x+2\right)\left(x+3\right).
\frac{x^{3}+2x^{2}-4x+6}{x\left(x+2\right)\left(x+3\right)}
Combine like terms in x^{3}+x^{2}-9x+x^{2}+3x+2x+6.
\frac{x^{3}+2x^{2}-4x+6}{x^{3}+5x^{2}+6x}
Expand x\left(x+2\right)\left(x+3\right).
\frac{\left(2x-3\right)\left(x+3\right)}{\left(x+2\right)\left(x+3\right)}-\frac{x\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}+\frac{1}{x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+2 and x+3 is \left(x+2\right)\left(x+3\right). Multiply \frac{2x-3}{x+2} times \frac{x+3}{x+3}. Multiply \frac{x}{x+3} times \frac{x+2}{x+2}.
\frac{\left(2x-3\right)\left(x+3\right)-x\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}+\frac{1}{x}
Since \frac{\left(2x-3\right)\left(x+3\right)}{\left(x+2\right)\left(x+3\right)} and \frac{x\left(x+2\right)}{\left(x+2\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{2}+6x-3x-9-x^{2}-2x}{\left(x+2\right)\left(x+3\right)}+\frac{1}{x}
Do the multiplications in \left(2x-3\right)\left(x+3\right)-x\left(x+2\right).
\frac{x^{2}+x-9}{\left(x+2\right)\left(x+3\right)}+\frac{1}{x}
Combine like terms in 2x^{2}+6x-3x-9-x^{2}-2x.
\frac{\left(x^{2}+x-9\right)x}{x\left(x+2\right)\left(x+3\right)}+\frac{\left(x+2\right)\left(x+3\right)}{x\left(x+2\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+2\right)\left(x+3\right) and x is x\left(x+2\right)\left(x+3\right). Multiply \frac{x^{2}+x-9}{\left(x+2\right)\left(x+3\right)} times \frac{x}{x}. Multiply \frac{1}{x} times \frac{\left(x+2\right)\left(x+3\right)}{\left(x+2\right)\left(x+3\right)}.
\frac{\left(x^{2}+x-9\right)x+\left(x+2\right)\left(x+3\right)}{x\left(x+2\right)\left(x+3\right)}
Since \frac{\left(x^{2}+x-9\right)x}{x\left(x+2\right)\left(x+3\right)} and \frac{\left(x+2\right)\left(x+3\right)}{x\left(x+2\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{x^{3}+x^{2}-9x+x^{2}+3x+2x+6}{x\left(x+2\right)\left(x+3\right)}
Do the multiplications in \left(x^{2}+x-9\right)x+\left(x+2\right)\left(x+3\right).
\frac{x^{3}+2x^{2}-4x+6}{x\left(x+2\right)\left(x+3\right)}
Combine like terms in x^{3}+x^{2}-9x+x^{2}+3x+2x+6.
\frac{x^{3}+2x^{2}-4x+6}{x^{3}+5x^{2}+6x}
Expand x\left(x+2\right)\left(x+3\right).