Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x-3=4xx+4x\left(-1\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 4x.
2x-3=4x^{2}+4x\left(-1\right)
Multiply x and x to get x^{2}.
2x-3=4x^{2}-4x
Multiply 4 and -1 to get -4.
2x-3-4x^{2}=-4x
Subtract 4x^{2} from both sides.
2x-3-4x^{2}+4x=0
Add 4x to both sides.
6x-3-4x^{2}=0
Combine 2x and 4x to get 6x.
-4x^{2}+6x-3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-6±\sqrt{6^{2}-4\left(-4\right)\left(-3\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 6 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-4\right)\left(-3\right)}}{2\left(-4\right)}
Square 6.
x=\frac{-6±\sqrt{36+16\left(-3\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-6±\sqrt{36-48}}{2\left(-4\right)}
Multiply 16 times -3.
x=\frac{-6±\sqrt{-12}}{2\left(-4\right)}
Add 36 to -48.
x=\frac{-6±2\sqrt{3}i}{2\left(-4\right)}
Take the square root of -12.
x=\frac{-6±2\sqrt{3}i}{-8}
Multiply 2 times -4.
x=\frac{-6+2\sqrt{3}i}{-8}
Now solve the equation x=\frac{-6±2\sqrt{3}i}{-8} when ± is plus. Add -6 to 2i\sqrt{3}.
x=\frac{-\sqrt{3}i+3}{4}
Divide -6+2i\sqrt{3} by -8.
x=\frac{-2\sqrt{3}i-6}{-8}
Now solve the equation x=\frac{-6±2\sqrt{3}i}{-8} when ± is minus. Subtract 2i\sqrt{3} from -6.
x=\frac{3+\sqrt{3}i}{4}
Divide -6-2i\sqrt{3} by -8.
x=\frac{-\sqrt{3}i+3}{4} x=\frac{3+\sqrt{3}i}{4}
The equation is now solved.
2x-3=4xx+4x\left(-1\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 4x.
2x-3=4x^{2}+4x\left(-1\right)
Multiply x and x to get x^{2}.
2x-3=4x^{2}-4x
Multiply 4 and -1 to get -4.
2x-3-4x^{2}=-4x
Subtract 4x^{2} from both sides.
2x-3-4x^{2}+4x=0
Add 4x to both sides.
6x-3-4x^{2}=0
Combine 2x and 4x to get 6x.
6x-4x^{2}=3
Add 3 to both sides. Anything plus zero gives itself.
-4x^{2}+6x=3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-4x^{2}+6x}{-4}=\frac{3}{-4}
Divide both sides by -4.
x^{2}+\frac{6}{-4}x=\frac{3}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}-\frac{3}{2}x=\frac{3}{-4}
Reduce the fraction \frac{6}{-4} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{3}{2}x=-\frac{3}{4}
Divide 3 by -4.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=-\frac{3}{4}+\left(-\frac{3}{4}\right)^{2}
Divide -\frac{3}{2}, the coefficient of the x term, by 2 to get -\frac{3}{4}. Then add the square of -\frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{2}x+\frac{9}{16}=-\frac{3}{4}+\frac{9}{16}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{2}x+\frac{9}{16}=-\frac{3}{16}
Add -\frac{3}{4} to \frac{9}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{4}\right)^{2}=-\frac{3}{16}
Factor x^{2}-\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{-\frac{3}{16}}
Take the square root of both sides of the equation.
x-\frac{3}{4}=\frac{\sqrt{3}i}{4} x-\frac{3}{4}=-\frac{\sqrt{3}i}{4}
Simplify.
x=\frac{3+\sqrt{3}i}{4} x=\frac{-\sqrt{3}i+3}{4}
Add \frac{3}{4} to both sides of the equation.