Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2x-2y\right)\times 3y^{2}}{y\left(x^{2}-y^{2}\right)}+\frac{6x}{x+y}
Multiply \frac{2x-2y}{y} times \frac{3y^{2}}{x^{2}-y^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{3y\left(2x-2y\right)}{x^{2}-y^{2}}+\frac{6x}{x+y}
Cancel out y in both numerator and denominator.
\frac{3y\left(2x-2y\right)}{\left(x+y\right)\left(x-y\right)}+\frac{6x}{x+y}
Factor x^{2}-y^{2}.
\frac{3y\left(2x-2y\right)}{\left(x+y\right)\left(x-y\right)}+\frac{6x\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+y\right)\left(x-y\right) and x+y is \left(x+y\right)\left(x-y\right). Multiply \frac{6x}{x+y} times \frac{x-y}{x-y}.
\frac{3y\left(2x-2y\right)+6x\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}
Since \frac{3y\left(2x-2y\right)}{\left(x+y\right)\left(x-y\right)} and \frac{6x\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} have the same denominator, add them by adding their numerators.
\frac{6yx-6y^{2}+6x^{2}-6xy}{\left(x+y\right)\left(x-y\right)}
Do the multiplications in 3y\left(2x-2y\right)+6x\left(x-y\right).
\frac{-6y^{2}+6x^{2}}{\left(x+y\right)\left(x-y\right)}
Combine like terms in 6yx-6y^{2}+6x^{2}-6xy.
\frac{6\left(-x+y\right)\left(-x-y\right)}{\left(x+y\right)\left(x-y\right)}
Factor the expressions that are not already factored in \frac{-6y^{2}+6x^{2}}{\left(x+y\right)\left(x-y\right)}.
\frac{-\left(-1\right)\times 6\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}
Extract the negative sign in -x-y. Extract the negative sign in -x+y.
-\left(-1\right)\times 6
Cancel out \left(x+y\right)\left(x-y\right) in both numerator and denominator.
6
Multiply -1 and -1 to get 1.