Solve for x
x>-\frac{3}{4}
Graph
Share
Copied to clipboard
2x-2>-\frac{7}{6}\times 3
Multiply both sides by 3. Since 3 is positive, the inequality direction remains the same.
2x-2>\frac{-7\times 3}{6}
Express -\frac{7}{6}\times 3 as a single fraction.
2x-2>\frac{-21}{6}
Multiply -7 and 3 to get -21.
2x-2>-\frac{7}{2}
Reduce the fraction \frac{-21}{6} to lowest terms by extracting and canceling out 3.
2x>-\frac{7}{2}+2
Add 2 to both sides.
2x>-\frac{7}{2}+\frac{4}{2}
Convert 2 to fraction \frac{4}{2}.
2x>\frac{-7+4}{2}
Since -\frac{7}{2} and \frac{4}{2} have the same denominator, add them by adding their numerators.
2x>-\frac{3}{2}
Add -7 and 4 to get -3.
x>\frac{-\frac{3}{2}}{2}
Divide both sides by 2. Since 2 is positive, the inequality direction remains the same.
x>\frac{-3}{2\times 2}
Express \frac{-\frac{3}{2}}{2} as a single fraction.
x>\frac{-3}{4}
Multiply 2 and 2 to get 4.
x>-\frac{3}{4}
Fraction \frac{-3}{4} can be rewritten as -\frac{3}{4} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}