Evaluate
\sqrt{2}\left(x-1\right)
Factor
\sqrt{2}\left(x-1\right)
Graph
Share
Copied to clipboard
\frac{\left(2x-2\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{2x-2}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\left(2x-2\right)\sqrt{2}}{2}
The square of \sqrt{2} is 2.
\frac{2x\sqrt{2}-2\sqrt{2}}{2}
Use the distributive property to multiply 2x-2 by \sqrt{2}.
-\sqrt{2}+\sqrt{2}x
Divide each term of 2x\sqrt{2}-2\sqrt{2} by 2 to get -\sqrt{2}+\sqrt{2}x.
factor(\frac{\left(2x-2\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}})
Rationalize the denominator of \frac{2x-2}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
factor(\frac{\left(2x-2\right)\sqrt{2}}{2})
The square of \sqrt{2} is 2.
factor(\frac{2x\sqrt{2}-2\sqrt{2}}{2})
Use the distributive property to multiply 2x-2 by \sqrt{2}.
factor(-\sqrt{2}+\sqrt{2}x)
Divide each term of 2x\sqrt{2}-2\sqrt{2} by 2 to get -\sqrt{2}+\sqrt{2}x.
\sqrt{2}\left(-1+x\right)
Factor out \sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}