Solve for x
x<-\frac{4}{3}
Graph
Share
Copied to clipboard
2x-2+4x<-5\times 2
Multiply both sides by 2. Since 2 is positive, the inequality direction remains the same.
6x-2<-5\times 2
Combine 2x and 4x to get 6x.
6x-2<-10
Multiply -5 and 2 to get -10.
6x<-10+2
Add 2 to both sides.
6x<-8
Add -10 and 2 to get -8.
x<\frac{-8}{6}
Divide both sides by 6. Since 6 is positive, the inequality direction remains the same.
x<-\frac{4}{3}
Reduce the fraction \frac{-8}{6} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}