Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2x-1}{\left(x-3\right)^{2}}-\frac{3x}{x+3}
Factor x^{2}-6x+9.
\frac{\left(2x-1\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)^{2}}-\frac{3x\left(x-3\right)^{2}}{\left(x+3\right)\left(x-3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)^{2} and x+3 is \left(x+3\right)\left(x-3\right)^{2}. Multiply \frac{2x-1}{\left(x-3\right)^{2}} times \frac{x+3}{x+3}. Multiply \frac{3x}{x+3} times \frac{\left(x-3\right)^{2}}{\left(x-3\right)^{2}}.
\frac{\left(2x-1\right)\left(x+3\right)-3x\left(x-3\right)^{2}}{\left(x+3\right)\left(x-3\right)^{2}}
Since \frac{\left(2x-1\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)^{2}} and \frac{3x\left(x-3\right)^{2}}{\left(x+3\right)\left(x-3\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{2}+6x-x-3-3x^{3}+18x^{2}-27x}{\left(x+3\right)\left(x-3\right)^{2}}
Do the multiplications in \left(2x-1\right)\left(x+3\right)-3x\left(x-3\right)^{2}.
\frac{20x^{2}-22x-3-3x^{3}}{\left(x+3\right)\left(x-3\right)^{2}}
Combine like terms in 2x^{2}+6x-x-3-3x^{3}+18x^{2}-27x.
\frac{20x^{2}-22x-3-3x^{3}}{x^{3}-3x^{2}-9x+27}
Expand \left(x+3\right)\left(x-3\right)^{2}.
\frac{2x-1}{\left(x-3\right)^{2}}-\frac{3x}{x+3}
Factor x^{2}-6x+9.
\frac{\left(2x-1\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)^{2}}-\frac{3x\left(x-3\right)^{2}}{\left(x+3\right)\left(x-3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)^{2} and x+3 is \left(x+3\right)\left(x-3\right)^{2}. Multiply \frac{2x-1}{\left(x-3\right)^{2}} times \frac{x+3}{x+3}. Multiply \frac{3x}{x+3} times \frac{\left(x-3\right)^{2}}{\left(x-3\right)^{2}}.
\frac{\left(2x-1\right)\left(x+3\right)-3x\left(x-3\right)^{2}}{\left(x+3\right)\left(x-3\right)^{2}}
Since \frac{\left(2x-1\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)^{2}} and \frac{3x\left(x-3\right)^{2}}{\left(x+3\right)\left(x-3\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{2}+6x-x-3-3x^{3}+18x^{2}-27x}{\left(x+3\right)\left(x-3\right)^{2}}
Do the multiplications in \left(2x-1\right)\left(x+3\right)-3x\left(x-3\right)^{2}.
\frac{20x^{2}-22x-3-3x^{3}}{\left(x+3\right)\left(x-3\right)^{2}}
Combine like terms in 2x^{2}+6x-x-3-3x^{3}+18x^{2}-27x.
\frac{20x^{2}-22x-3-3x^{3}}{x^{3}-3x^{2}-9x+27}
Expand \left(x+3\right)\left(x-3\right)^{2}.