Solve for x
x = -\frac{5}{4} = -1\frac{1}{4} = -1.25
x=5
Graph
Share
Copied to clipboard
\left(x-1\right)\left(x+2\right)\left(2x-1\right)+\left(x^{2}-1\right)\left(3x-1\right)=\left(x+1\right)\left(x+2\right)\left(x-7\right)+\left(x-1\right)\left(x+1\right)\left(x+2\right)\times 4
Variable x cannot be equal to any of the values -2,-1,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+1\right)\left(x+2\right), the least common multiple of x+1,x+2,x-1.
\left(x^{2}+x-2\right)\left(2x-1\right)+\left(x^{2}-1\right)\left(3x-1\right)=\left(x+1\right)\left(x+2\right)\left(x-7\right)+\left(x-1\right)\left(x+1\right)\left(x+2\right)\times 4
Use the distributive property to multiply x-1 by x+2 and combine like terms.
2x^{3}+x^{2}-5x+2+\left(x^{2}-1\right)\left(3x-1\right)=\left(x+1\right)\left(x+2\right)\left(x-7\right)+\left(x-1\right)\left(x+1\right)\left(x+2\right)\times 4
Use the distributive property to multiply x^{2}+x-2 by 2x-1 and combine like terms.
2x^{3}+x^{2}-5x+2+3x^{3}-x^{2}-3x+1=\left(x+1\right)\left(x+2\right)\left(x-7\right)+\left(x-1\right)\left(x+1\right)\left(x+2\right)\times 4
Use the distributive property to multiply x^{2}-1 by 3x-1.
5x^{3}+x^{2}-5x+2-x^{2}-3x+1=\left(x+1\right)\left(x+2\right)\left(x-7\right)+\left(x-1\right)\left(x+1\right)\left(x+2\right)\times 4
Combine 2x^{3} and 3x^{3} to get 5x^{3}.
5x^{3}-5x+2-3x+1=\left(x+1\right)\left(x+2\right)\left(x-7\right)+\left(x-1\right)\left(x+1\right)\left(x+2\right)\times 4
Combine x^{2} and -x^{2} to get 0.
5x^{3}-8x+2+1=\left(x+1\right)\left(x+2\right)\left(x-7\right)+\left(x-1\right)\left(x+1\right)\left(x+2\right)\times 4
Combine -5x and -3x to get -8x.
5x^{3}-8x+3=\left(x+1\right)\left(x+2\right)\left(x-7\right)+\left(x-1\right)\left(x+1\right)\left(x+2\right)\times 4
Add 2 and 1 to get 3.
5x^{3}-8x+3=\left(x^{2}+3x+2\right)\left(x-7\right)+\left(x-1\right)\left(x+1\right)\left(x+2\right)\times 4
Use the distributive property to multiply x+1 by x+2 and combine like terms.
5x^{3}-8x+3=x^{3}-4x^{2}-19x-14+\left(x-1\right)\left(x+1\right)\left(x+2\right)\times 4
Use the distributive property to multiply x^{2}+3x+2 by x-7 and combine like terms.
5x^{3}-8x+3=x^{3}-4x^{2}-19x-14+\left(x^{2}-1\right)\left(x+2\right)\times 4
Use the distributive property to multiply x-1 by x+1 and combine like terms.
5x^{3}-8x+3=x^{3}-4x^{2}-19x-14+\left(x^{3}+2x^{2}-x-2\right)\times 4
Use the distributive property to multiply x^{2}-1 by x+2.
5x^{3}-8x+3=x^{3}-4x^{2}-19x-14+4x^{3}+8x^{2}-4x-8
Use the distributive property to multiply x^{3}+2x^{2}-x-2 by 4.
5x^{3}-8x+3=5x^{3}-4x^{2}-19x-14+8x^{2}-4x-8
Combine x^{3} and 4x^{3} to get 5x^{3}.
5x^{3}-8x+3=5x^{3}+4x^{2}-19x-14-4x-8
Combine -4x^{2} and 8x^{2} to get 4x^{2}.
5x^{3}-8x+3=5x^{3}+4x^{2}-23x-14-8
Combine -19x and -4x to get -23x.
5x^{3}-8x+3=5x^{3}+4x^{2}-23x-22
Subtract 8 from -14 to get -22.
5x^{3}-8x+3-5x^{3}=4x^{2}-23x-22
Subtract 5x^{3} from both sides.
-8x+3=4x^{2}-23x-22
Combine 5x^{3} and -5x^{3} to get 0.
-8x+3-4x^{2}=-23x-22
Subtract 4x^{2} from both sides.
-8x+3-4x^{2}+23x=-22
Add 23x to both sides.
15x+3-4x^{2}=-22
Combine -8x and 23x to get 15x.
15x+3-4x^{2}+22=0
Add 22 to both sides.
15x+25-4x^{2}=0
Add 3 and 22 to get 25.
-4x^{2}+15x+25=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-15±\sqrt{15^{2}-4\left(-4\right)\times 25}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 15 for b, and 25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-15±\sqrt{225-4\left(-4\right)\times 25}}{2\left(-4\right)}
Square 15.
x=\frac{-15±\sqrt{225+16\times 25}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-15±\sqrt{225+400}}{2\left(-4\right)}
Multiply 16 times 25.
x=\frac{-15±\sqrt{625}}{2\left(-4\right)}
Add 225 to 400.
x=\frac{-15±25}{2\left(-4\right)}
Take the square root of 625.
x=\frac{-15±25}{-8}
Multiply 2 times -4.
x=\frac{10}{-8}
Now solve the equation x=\frac{-15±25}{-8} when ± is plus. Add -15 to 25.
x=-\frac{5}{4}
Reduce the fraction \frac{10}{-8} to lowest terms by extracting and canceling out 2.
x=-\frac{40}{-8}
Now solve the equation x=\frac{-15±25}{-8} when ± is minus. Subtract 25 from -15.
x=5
Divide -40 by -8.
x=-\frac{5}{4} x=5
The equation is now solved.
\left(x-1\right)\left(x+2\right)\left(2x-1\right)+\left(x^{2}-1\right)\left(3x-1\right)=\left(x+1\right)\left(x+2\right)\left(x-7\right)+\left(x-1\right)\left(x+1\right)\left(x+2\right)\times 4
Variable x cannot be equal to any of the values -2,-1,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+1\right)\left(x+2\right), the least common multiple of x+1,x+2,x-1.
\left(x^{2}+x-2\right)\left(2x-1\right)+\left(x^{2}-1\right)\left(3x-1\right)=\left(x+1\right)\left(x+2\right)\left(x-7\right)+\left(x-1\right)\left(x+1\right)\left(x+2\right)\times 4
Use the distributive property to multiply x-1 by x+2 and combine like terms.
2x^{3}+x^{2}-5x+2+\left(x^{2}-1\right)\left(3x-1\right)=\left(x+1\right)\left(x+2\right)\left(x-7\right)+\left(x-1\right)\left(x+1\right)\left(x+2\right)\times 4
Use the distributive property to multiply x^{2}+x-2 by 2x-1 and combine like terms.
2x^{3}+x^{2}-5x+2+3x^{3}-x^{2}-3x+1=\left(x+1\right)\left(x+2\right)\left(x-7\right)+\left(x-1\right)\left(x+1\right)\left(x+2\right)\times 4
Use the distributive property to multiply x^{2}-1 by 3x-1.
5x^{3}+x^{2}-5x+2-x^{2}-3x+1=\left(x+1\right)\left(x+2\right)\left(x-7\right)+\left(x-1\right)\left(x+1\right)\left(x+2\right)\times 4
Combine 2x^{3} and 3x^{3} to get 5x^{3}.
5x^{3}-5x+2-3x+1=\left(x+1\right)\left(x+2\right)\left(x-7\right)+\left(x-1\right)\left(x+1\right)\left(x+2\right)\times 4
Combine x^{2} and -x^{2} to get 0.
5x^{3}-8x+2+1=\left(x+1\right)\left(x+2\right)\left(x-7\right)+\left(x-1\right)\left(x+1\right)\left(x+2\right)\times 4
Combine -5x and -3x to get -8x.
5x^{3}-8x+3=\left(x+1\right)\left(x+2\right)\left(x-7\right)+\left(x-1\right)\left(x+1\right)\left(x+2\right)\times 4
Add 2 and 1 to get 3.
5x^{3}-8x+3=\left(x^{2}+3x+2\right)\left(x-7\right)+\left(x-1\right)\left(x+1\right)\left(x+2\right)\times 4
Use the distributive property to multiply x+1 by x+2 and combine like terms.
5x^{3}-8x+3=x^{3}-4x^{2}-19x-14+\left(x-1\right)\left(x+1\right)\left(x+2\right)\times 4
Use the distributive property to multiply x^{2}+3x+2 by x-7 and combine like terms.
5x^{3}-8x+3=x^{3}-4x^{2}-19x-14+\left(x^{2}-1\right)\left(x+2\right)\times 4
Use the distributive property to multiply x-1 by x+1 and combine like terms.
5x^{3}-8x+3=x^{3}-4x^{2}-19x-14+\left(x^{3}+2x^{2}-x-2\right)\times 4
Use the distributive property to multiply x^{2}-1 by x+2.
5x^{3}-8x+3=x^{3}-4x^{2}-19x-14+4x^{3}+8x^{2}-4x-8
Use the distributive property to multiply x^{3}+2x^{2}-x-2 by 4.
5x^{3}-8x+3=5x^{3}-4x^{2}-19x-14+8x^{2}-4x-8
Combine x^{3} and 4x^{3} to get 5x^{3}.
5x^{3}-8x+3=5x^{3}+4x^{2}-19x-14-4x-8
Combine -4x^{2} and 8x^{2} to get 4x^{2}.
5x^{3}-8x+3=5x^{3}+4x^{2}-23x-14-8
Combine -19x and -4x to get -23x.
5x^{3}-8x+3=5x^{3}+4x^{2}-23x-22
Subtract 8 from -14 to get -22.
5x^{3}-8x+3-5x^{3}=4x^{2}-23x-22
Subtract 5x^{3} from both sides.
-8x+3=4x^{2}-23x-22
Combine 5x^{3} and -5x^{3} to get 0.
-8x+3-4x^{2}=-23x-22
Subtract 4x^{2} from both sides.
-8x+3-4x^{2}+23x=-22
Add 23x to both sides.
15x+3-4x^{2}=-22
Combine -8x and 23x to get 15x.
15x-4x^{2}=-22-3
Subtract 3 from both sides.
15x-4x^{2}=-25
Subtract 3 from -22 to get -25.
-4x^{2}+15x=-25
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-4x^{2}+15x}{-4}=-\frac{25}{-4}
Divide both sides by -4.
x^{2}+\frac{15}{-4}x=-\frac{25}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}-\frac{15}{4}x=-\frac{25}{-4}
Divide 15 by -4.
x^{2}-\frac{15}{4}x=\frac{25}{4}
Divide -25 by -4.
x^{2}-\frac{15}{4}x+\left(-\frac{15}{8}\right)^{2}=\frac{25}{4}+\left(-\frac{15}{8}\right)^{2}
Divide -\frac{15}{4}, the coefficient of the x term, by 2 to get -\frac{15}{8}. Then add the square of -\frac{15}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{15}{4}x+\frac{225}{64}=\frac{25}{4}+\frac{225}{64}
Square -\frac{15}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{15}{4}x+\frac{225}{64}=\frac{625}{64}
Add \frac{25}{4} to \frac{225}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{15}{8}\right)^{2}=\frac{625}{64}
Factor x^{2}-\frac{15}{4}x+\frac{225}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{15}{8}\right)^{2}}=\sqrt{\frac{625}{64}}
Take the square root of both sides of the equation.
x-\frac{15}{8}=\frac{25}{8} x-\frac{15}{8}=-\frac{25}{8}
Simplify.
x=5 x=-\frac{5}{4}
Add \frac{15}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}