Solve for x
x=-2
Graph
Share
Copied to clipboard
6\left(2x-1\right)+7\left(1-2x\right)=21\left(x-1\right)-2\left(18x+2\right)
Multiply both sides of the equation by 42, the least common multiple of 7,6,2,21.
12x-6+7\left(1-2x\right)=21\left(x-1\right)-2\left(18x+2\right)
Use the distributive property to multiply 6 by 2x-1.
12x-6+7-14x=21\left(x-1\right)-2\left(18x+2\right)
Use the distributive property to multiply 7 by 1-2x.
12x+1-14x=21\left(x-1\right)-2\left(18x+2\right)
Add -6 and 7 to get 1.
-2x+1=21\left(x-1\right)-2\left(18x+2\right)
Combine 12x and -14x to get -2x.
-2x+1=21x-21-2\left(18x+2\right)
Use the distributive property to multiply 21 by x-1.
-2x+1=21x-21-36x-4
Use the distributive property to multiply -2 by 18x+2.
-2x+1=-15x-21-4
Combine 21x and -36x to get -15x.
-2x+1=-15x-25
Subtract 4 from -21 to get -25.
-2x+1+15x=-25
Add 15x to both sides.
13x+1=-25
Combine -2x and 15x to get 13x.
13x=-25-1
Subtract 1 from both sides.
13x=-26
Subtract 1 from -25 to get -26.
x=\frac{-26}{13}
Divide both sides by 13.
x=-2
Divide -26 by 13 to get -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}