Solve for x
x>\frac{19}{6}
Graph
Quiz
Algebra
5 problems similar to:
\frac { 2 x - 1 } { 6 } - \frac { x - 4 } { 5 } < \frac { x } { 3 }
Share
Copied to clipboard
5\left(2x-1\right)-6\left(x-4\right)<10x
Multiply both sides of the equation by 30, the least common multiple of 6,5,3. Since 30 is positive, the inequality direction remains the same.
10x-5-6\left(x-4\right)<10x
Use the distributive property to multiply 5 by 2x-1.
10x-5-6x+24<10x
Use the distributive property to multiply -6 by x-4.
4x-5+24<10x
Combine 10x and -6x to get 4x.
4x+19<10x
Add -5 and 24 to get 19.
4x+19-10x<0
Subtract 10x from both sides.
-6x+19<0
Combine 4x and -10x to get -6x.
-6x<-19
Subtract 19 from both sides. Anything subtracted from zero gives its negation.
x>\frac{-19}{-6}
Divide both sides by -6. Since -6 is negative, the inequality direction is changed.
x>\frac{19}{6}
Fraction \frac{-19}{-6} can be simplified to \frac{19}{6} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}