Solve for x (complex solution)
x=-\frac{7z^{2}+6}{2\left(2z^{2}-9\right)}
z\neq -\frac{3\sqrt{2}}{2}\text{ and }z\neq \frac{3\sqrt{2}}{2}\text{ and }z\neq 0
Solve for x
x=-\frac{7z^{2}+6}{2\left(2z^{2}-9\right)}
|z|\neq \frac{3\sqrt{2}}{2}\text{ and }z\neq 0
Solve for z (complex solution)
z=-i\left(4x+7\right)^{-\frac{1}{2}}\sqrt{6-18x}
z=i\left(4x+7\right)^{-\frac{1}{2}}\sqrt{6-18x}\text{, }x\neq \frac{1}{3}\text{ and }x\neq -\frac{7}{4}
Solve for z
z=\sqrt{\frac{6\left(3x-1\right)}{4x+7}}
z=-\sqrt{\frac{6\left(3x-1\right)}{4x+7}}\text{, }x>\frac{1}{3}\text{ or }x<-\frac{7}{4}
Share
Copied to clipboard
2z^{2}\left(2x-1\right)+6z^{2}\times \frac{3}{2}=6\left(3x-1\right)
Multiply both sides of the equation by 6z^{2}, the least common multiple of 3,2,z^{2}.
4z^{2}x-2z^{2}+6z^{2}\times \frac{3}{2}=6\left(3x-1\right)
Use the distributive property to multiply 2z^{2} by 2x-1.
4z^{2}x-2z^{2}+9z^{2}=6\left(3x-1\right)
Multiply 6 and \frac{3}{2} to get 9.
4z^{2}x+7z^{2}=6\left(3x-1\right)
Combine -2z^{2} and 9z^{2} to get 7z^{2}.
4z^{2}x+7z^{2}=18x-6
Use the distributive property to multiply 6 by 3x-1.
4z^{2}x+7z^{2}-18x=-6
Subtract 18x from both sides.
4z^{2}x-18x=-6-7z^{2}
Subtract 7z^{2} from both sides.
\left(4z^{2}-18\right)x=-6-7z^{2}
Combine all terms containing x.
\left(4z^{2}-18\right)x=-7z^{2}-6
The equation is in standard form.
\frac{\left(4z^{2}-18\right)x}{4z^{2}-18}=\frac{-7z^{2}-6}{4z^{2}-18}
Divide both sides by 4z^{2}-18.
x=\frac{-7z^{2}-6}{4z^{2}-18}
Dividing by 4z^{2}-18 undoes the multiplication by 4z^{2}-18.
x=-\frac{7z^{2}+6}{2\left(2z^{2}-9\right)}
Divide -6-7z^{2} by 4z^{2}-18.
2z^{2}\left(2x-1\right)+6z^{2}\times \frac{3}{2}=6\left(3x-1\right)
Multiply both sides of the equation by 6z^{2}, the least common multiple of 3,2,z^{2}.
4z^{2}x-2z^{2}+6z^{2}\times \frac{3}{2}=6\left(3x-1\right)
Use the distributive property to multiply 2z^{2} by 2x-1.
4z^{2}x-2z^{2}+9z^{2}=6\left(3x-1\right)
Multiply 6 and \frac{3}{2} to get 9.
4z^{2}x+7z^{2}=6\left(3x-1\right)
Combine -2z^{2} and 9z^{2} to get 7z^{2}.
4z^{2}x+7z^{2}=18x-6
Use the distributive property to multiply 6 by 3x-1.
4z^{2}x+7z^{2}-18x=-6
Subtract 18x from both sides.
4z^{2}x-18x=-6-7z^{2}
Subtract 7z^{2} from both sides.
\left(4z^{2}-18\right)x=-6-7z^{2}
Combine all terms containing x.
\left(4z^{2}-18\right)x=-7z^{2}-6
The equation is in standard form.
\frac{\left(4z^{2}-18\right)x}{4z^{2}-18}=\frac{-7z^{2}-6}{4z^{2}-18}
Divide both sides by 4z^{2}-18.
x=\frac{-7z^{2}-6}{4z^{2}-18}
Dividing by 4z^{2}-18 undoes the multiplication by 4z^{2}-18.
x=-\frac{7z^{2}+6}{2\left(2z^{2}-9\right)}
Divide -6-7z^{2} by 4z^{2}-18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}