Solve for x
x\geq \frac{1}{5}
Graph
Share
Copied to clipboard
3\left(2x-1\right)-\left(5x+2\right)-6x\leq -6
Multiply both sides of the equation by 6, the least common multiple of 2,6. Since 6 is positive, the inequality direction remains the same.
6x-3-\left(5x+2\right)-6x\leq -6
Use the distributive property to multiply 3 by 2x-1.
6x-3-5x-2-6x\leq -6
To find the opposite of 5x+2, find the opposite of each term.
x-3-2-6x\leq -6
Combine 6x and -5x to get x.
x-5-6x\leq -6
Subtract 2 from -3 to get -5.
-5x-5\leq -6
Combine x and -6x to get -5x.
-5x\leq -6+5
Add 5 to both sides.
-5x\leq -1
Add -6 and 5 to get -1.
x\geq \frac{-1}{-5}
Divide both sides by -5. Since -5 is negative, the inequality direction is changed.
x\geq \frac{1}{5}
Fraction \frac{-1}{-5} can be simplified to \frac{1}{5} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}