Solve for x
x = -\frac{9}{8} = -1\frac{1}{8} = -1.125
Graph
Share
Copied to clipboard
2x-\frac{13}{4}+2\left(2x+3\right)=-4
Multiply both sides of the equation by 4, the least common multiple of 4,2.
2x-\frac{13}{4}+4x+6=-4
Use the distributive property to multiply 2 by 2x+3.
6x-\frac{13}{4}+6=-4
Combine 2x and 4x to get 6x.
6x-\frac{13}{4}+\frac{24}{4}=-4
Convert 6 to fraction \frac{24}{4}.
6x+\frac{-13+24}{4}=-4
Since -\frac{13}{4} and \frac{24}{4} have the same denominator, add them by adding their numerators.
6x+\frac{11}{4}=-4
Add -13 and 24 to get 11.
6x=-4-\frac{11}{4}
Subtract \frac{11}{4} from both sides.
6x=-\frac{16}{4}-\frac{11}{4}
Convert -4 to fraction -\frac{16}{4}.
6x=\frac{-16-11}{4}
Since -\frac{16}{4} and \frac{11}{4} have the same denominator, subtract them by subtracting their numerators.
6x=-\frac{27}{4}
Subtract 11 from -16 to get -27.
x=\frac{-\frac{27}{4}}{6}
Divide both sides by 6.
x=\frac{-27}{4\times 6}
Express \frac{-\frac{27}{4}}{6} as a single fraction.
x=\frac{-27}{24}
Multiply 4 and 6 to get 24.
x=-\frac{9}{8}
Reduce the fraction \frac{-27}{24} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}