Evaluate
\frac{\left(x-2y\right)\left(2x+1\right)}{2xy}
Expand
-\frac{2y-x+4xy-2x^{2}}{2xy}
Quiz
Algebra
5 problems similar to:
\frac { 2 x ( x - 2 y ) } { 2 x y } + \frac { ( x - 2 y ) } { 2 x y }
Share
Copied to clipboard
\frac{x-2y}{y}+\frac{x-2y}{2xy}
Cancel out 2x in both numerator and denominator.
\frac{\left(x-2y\right)\times 2x}{2xy}+\frac{x-2y}{2xy}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y and 2xy is 2xy. Multiply \frac{x-2y}{y} times \frac{2x}{2x}.
\frac{\left(x-2y\right)\times 2x+x-2y}{2xy}
Since \frac{\left(x-2y\right)\times 2x}{2xy} and \frac{x-2y}{2xy} have the same denominator, add them by adding their numerators.
\frac{2x^{2}-4yx+x-2y}{2xy}
Do the multiplications in \left(x-2y\right)\times 2x+x-2y.
\frac{x-2y}{y}+\frac{x-2y}{2xy}
Cancel out 2x in both numerator and denominator.
\frac{\left(x-2y\right)\times 2x}{2xy}+\frac{x-2y}{2xy}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y and 2xy is 2xy. Multiply \frac{x-2y}{y} times \frac{2x}{2x}.
\frac{\left(x-2y\right)\times 2x+x-2y}{2xy}
Since \frac{\left(x-2y\right)\times 2x}{2xy} and \frac{x-2y}{2xy} have the same denominator, add them by adding their numerators.
\frac{2x^{2}-4yx+x-2y}{2xy}
Do the multiplications in \left(x-2y\right)\times 2x+x-2y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}