Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x-3\right)\times 2x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Variable x cannot be equal to any of the values 3,4 since division by zero is not defined. Multiply both sides of the equation by \left(x-4\right)\left(x-3\right), the least common multiple of x-4,x-3,x^{2}-7x+12.
\left(2x-6\right)x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Use the distributive property to multiply x-3 by 2.
2x^{2}-6x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Use the distributive property to multiply 2x-6 by x.
2x^{2}-6x+3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Use the distributive property to multiply x-4 by 3.
2x^{2}-3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Combine -6x and 3x to get -3x.
2x^{2}-3x-12+\left(x^{2}-7x+12\right)\times 4=30+5x^{2}-36x
Use the distributive property to multiply x-4 by x-3 and combine like terms.
2x^{2}-3x-12+4x^{2}-28x+48=30+5x^{2}-36x
Use the distributive property to multiply x^{2}-7x+12 by 4.
6x^{2}-3x-12-28x+48=30+5x^{2}-36x
Combine 2x^{2} and 4x^{2} to get 6x^{2}.
6x^{2}-31x-12+48=30+5x^{2}-36x
Combine -3x and -28x to get -31x.
6x^{2}-31x+36=30+5x^{2}-36x
Add -12 and 48 to get 36.
6x^{2}-31x+36-30=5x^{2}-36x
Subtract 30 from both sides.
6x^{2}-31x+6=5x^{2}-36x
Subtract 30 from 36 to get 6.
6x^{2}-31x+6-5x^{2}=-36x
Subtract 5x^{2} from both sides.
x^{2}-31x+6=-36x
Combine 6x^{2} and -5x^{2} to get x^{2}.
x^{2}-31x+6+36x=0
Add 36x to both sides.
x^{2}+5x+6=0
Combine -31x and 36x to get 5x.
a+b=5 ab=6
To solve the equation, factor x^{2}+5x+6 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
1,6 2,3
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 6.
1+6=7 2+3=5
Calculate the sum for each pair.
a=2 b=3
The solution is the pair that gives sum 5.
\left(x+2\right)\left(x+3\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=-2 x=-3
To find equation solutions, solve x+2=0 and x+3=0.
\left(x-3\right)\times 2x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Variable x cannot be equal to any of the values 3,4 since division by zero is not defined. Multiply both sides of the equation by \left(x-4\right)\left(x-3\right), the least common multiple of x-4,x-3,x^{2}-7x+12.
\left(2x-6\right)x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Use the distributive property to multiply x-3 by 2.
2x^{2}-6x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Use the distributive property to multiply 2x-6 by x.
2x^{2}-6x+3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Use the distributive property to multiply x-4 by 3.
2x^{2}-3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Combine -6x and 3x to get -3x.
2x^{2}-3x-12+\left(x^{2}-7x+12\right)\times 4=30+5x^{2}-36x
Use the distributive property to multiply x-4 by x-3 and combine like terms.
2x^{2}-3x-12+4x^{2}-28x+48=30+5x^{2}-36x
Use the distributive property to multiply x^{2}-7x+12 by 4.
6x^{2}-3x-12-28x+48=30+5x^{2}-36x
Combine 2x^{2} and 4x^{2} to get 6x^{2}.
6x^{2}-31x-12+48=30+5x^{2}-36x
Combine -3x and -28x to get -31x.
6x^{2}-31x+36=30+5x^{2}-36x
Add -12 and 48 to get 36.
6x^{2}-31x+36-30=5x^{2}-36x
Subtract 30 from both sides.
6x^{2}-31x+6=5x^{2}-36x
Subtract 30 from 36 to get 6.
6x^{2}-31x+6-5x^{2}=-36x
Subtract 5x^{2} from both sides.
x^{2}-31x+6=-36x
Combine 6x^{2} and -5x^{2} to get x^{2}.
x^{2}-31x+6+36x=0
Add 36x to both sides.
x^{2}+5x+6=0
Combine -31x and 36x to get 5x.
a+b=5 ab=1\times 6=6
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx+6. To find a and b, set up a system to be solved.
1,6 2,3
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 6.
1+6=7 2+3=5
Calculate the sum for each pair.
a=2 b=3
The solution is the pair that gives sum 5.
\left(x^{2}+2x\right)+\left(3x+6\right)
Rewrite x^{2}+5x+6 as \left(x^{2}+2x\right)+\left(3x+6\right).
x\left(x+2\right)+3\left(x+2\right)
Factor out x in the first and 3 in the second group.
\left(x+2\right)\left(x+3\right)
Factor out common term x+2 by using distributive property.
x=-2 x=-3
To find equation solutions, solve x+2=0 and x+3=0.
\left(x-3\right)\times 2x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Variable x cannot be equal to any of the values 3,4 since division by zero is not defined. Multiply both sides of the equation by \left(x-4\right)\left(x-3\right), the least common multiple of x-4,x-3,x^{2}-7x+12.
\left(2x-6\right)x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Use the distributive property to multiply x-3 by 2.
2x^{2}-6x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Use the distributive property to multiply 2x-6 by x.
2x^{2}-6x+3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Use the distributive property to multiply x-4 by 3.
2x^{2}-3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Combine -6x and 3x to get -3x.
2x^{2}-3x-12+\left(x^{2}-7x+12\right)\times 4=30+5x^{2}-36x
Use the distributive property to multiply x-4 by x-3 and combine like terms.
2x^{2}-3x-12+4x^{2}-28x+48=30+5x^{2}-36x
Use the distributive property to multiply x^{2}-7x+12 by 4.
6x^{2}-3x-12-28x+48=30+5x^{2}-36x
Combine 2x^{2} and 4x^{2} to get 6x^{2}.
6x^{2}-31x-12+48=30+5x^{2}-36x
Combine -3x and -28x to get -31x.
6x^{2}-31x+36=30+5x^{2}-36x
Add -12 and 48 to get 36.
6x^{2}-31x+36-30=5x^{2}-36x
Subtract 30 from both sides.
6x^{2}-31x+6=5x^{2}-36x
Subtract 30 from 36 to get 6.
6x^{2}-31x+6-5x^{2}=-36x
Subtract 5x^{2} from both sides.
x^{2}-31x+6=-36x
Combine 6x^{2} and -5x^{2} to get x^{2}.
x^{2}-31x+6+36x=0
Add 36x to both sides.
x^{2}+5x+6=0
Combine -31x and 36x to get 5x.
x=\frac{-5±\sqrt{5^{2}-4\times 6}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 5 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 6}}{2}
Square 5.
x=\frac{-5±\sqrt{25-24}}{2}
Multiply -4 times 6.
x=\frac{-5±\sqrt{1}}{2}
Add 25 to -24.
x=\frac{-5±1}{2}
Take the square root of 1.
x=-\frac{4}{2}
Now solve the equation x=\frac{-5±1}{2} when ± is plus. Add -5 to 1.
x=-2
Divide -4 by 2.
x=-\frac{6}{2}
Now solve the equation x=\frac{-5±1}{2} when ± is minus. Subtract 1 from -5.
x=-3
Divide -6 by 2.
x=-2 x=-3
The equation is now solved.
\left(x-3\right)\times 2x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Variable x cannot be equal to any of the values 3,4 since division by zero is not defined. Multiply both sides of the equation by \left(x-4\right)\left(x-3\right), the least common multiple of x-4,x-3,x^{2}-7x+12.
\left(2x-6\right)x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Use the distributive property to multiply x-3 by 2.
2x^{2}-6x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Use the distributive property to multiply 2x-6 by x.
2x^{2}-6x+3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Use the distributive property to multiply x-4 by 3.
2x^{2}-3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Combine -6x and 3x to get -3x.
2x^{2}-3x-12+\left(x^{2}-7x+12\right)\times 4=30+5x^{2}-36x
Use the distributive property to multiply x-4 by x-3 and combine like terms.
2x^{2}-3x-12+4x^{2}-28x+48=30+5x^{2}-36x
Use the distributive property to multiply x^{2}-7x+12 by 4.
6x^{2}-3x-12-28x+48=30+5x^{2}-36x
Combine 2x^{2} and 4x^{2} to get 6x^{2}.
6x^{2}-31x-12+48=30+5x^{2}-36x
Combine -3x and -28x to get -31x.
6x^{2}-31x+36=30+5x^{2}-36x
Add -12 and 48 to get 36.
6x^{2}-31x+36-5x^{2}=30-36x
Subtract 5x^{2} from both sides.
x^{2}-31x+36=30-36x
Combine 6x^{2} and -5x^{2} to get x^{2}.
x^{2}-31x+36+36x=30
Add 36x to both sides.
x^{2}+5x+36=30
Combine -31x and 36x to get 5x.
x^{2}+5x=30-36
Subtract 36 from both sides.
x^{2}+5x=-6
Subtract 36 from 30 to get -6.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=-6+\left(\frac{5}{2}\right)^{2}
Divide 5, the coefficient of the x term, by 2 to get \frac{5}{2}. Then add the square of \frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+5x+\frac{25}{4}=-6+\frac{25}{4}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+5x+\frac{25}{4}=\frac{1}{4}
Add -6 to \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=\frac{1}{4}
Factor x^{2}+5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
x+\frac{5}{2}=\frac{1}{2} x+\frac{5}{2}=-\frac{1}{2}
Simplify.
x=-2 x=-3
Subtract \frac{5}{2} from both sides of the equation.