Solve for x
x=-\frac{1}{2}=-0.5
x=6
Graph
Quiz
Polynomial
\frac { 2 x } { x - 3 } + \frac { 2 } { x - 5 } = \frac { 3 x } { x ^ { 2 } - 8 x + 15 }
Share
Copied to clipboard
\left(x-5\right)\times 2x+\left(x-3\right)\times 2=3x
Variable x cannot be equal to any of the values 3,5 since division by zero is not defined. Multiply both sides of the equation by \left(x-5\right)\left(x-3\right), the least common multiple of x-3,x-5,x^{2}-8x+15.
\left(2x-10\right)x+\left(x-3\right)\times 2=3x
Use the distributive property to multiply x-5 by 2.
2x^{2}-10x+\left(x-3\right)\times 2=3x
Use the distributive property to multiply 2x-10 by x.
2x^{2}-10x+2x-6=3x
Use the distributive property to multiply x-3 by 2.
2x^{2}-8x-6=3x
Combine -10x and 2x to get -8x.
2x^{2}-8x-6-3x=0
Subtract 3x from both sides.
2x^{2}-11x-6=0
Combine -8x and -3x to get -11x.
a+b=-11 ab=2\left(-6\right)=-12
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 2x^{2}+ax+bx-6. To find a and b, set up a system to be solved.
1,-12 2,-6 3,-4
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -12.
1-12=-11 2-6=-4 3-4=-1
Calculate the sum for each pair.
a=-12 b=1
The solution is the pair that gives sum -11.
\left(2x^{2}-12x\right)+\left(x-6\right)
Rewrite 2x^{2}-11x-6 as \left(2x^{2}-12x\right)+\left(x-6\right).
2x\left(x-6\right)+x-6
Factor out 2x in 2x^{2}-12x.
\left(x-6\right)\left(2x+1\right)
Factor out common term x-6 by using distributive property.
x=6 x=-\frac{1}{2}
To find equation solutions, solve x-6=0 and 2x+1=0.
\left(x-5\right)\times 2x+\left(x-3\right)\times 2=3x
Variable x cannot be equal to any of the values 3,5 since division by zero is not defined. Multiply both sides of the equation by \left(x-5\right)\left(x-3\right), the least common multiple of x-3,x-5,x^{2}-8x+15.
\left(2x-10\right)x+\left(x-3\right)\times 2=3x
Use the distributive property to multiply x-5 by 2.
2x^{2}-10x+\left(x-3\right)\times 2=3x
Use the distributive property to multiply 2x-10 by x.
2x^{2}-10x+2x-6=3x
Use the distributive property to multiply x-3 by 2.
2x^{2}-8x-6=3x
Combine -10x and 2x to get -8x.
2x^{2}-8x-6-3x=0
Subtract 3x from both sides.
2x^{2}-11x-6=0
Combine -8x and -3x to get -11x.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 2\left(-6\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -11 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 2\left(-6\right)}}{2\times 2}
Square -11.
x=\frac{-\left(-11\right)±\sqrt{121-8\left(-6\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-11\right)±\sqrt{121+48}}{2\times 2}
Multiply -8 times -6.
x=\frac{-\left(-11\right)±\sqrt{169}}{2\times 2}
Add 121 to 48.
x=\frac{-\left(-11\right)±13}{2\times 2}
Take the square root of 169.
x=\frac{11±13}{2\times 2}
The opposite of -11 is 11.
x=\frac{11±13}{4}
Multiply 2 times 2.
x=\frac{24}{4}
Now solve the equation x=\frac{11±13}{4} when ± is plus. Add 11 to 13.
x=6
Divide 24 by 4.
x=-\frac{2}{4}
Now solve the equation x=\frac{11±13}{4} when ± is minus. Subtract 13 from 11.
x=-\frac{1}{2}
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.
x=6 x=-\frac{1}{2}
The equation is now solved.
\left(x-5\right)\times 2x+\left(x-3\right)\times 2=3x
Variable x cannot be equal to any of the values 3,5 since division by zero is not defined. Multiply both sides of the equation by \left(x-5\right)\left(x-3\right), the least common multiple of x-3,x-5,x^{2}-8x+15.
\left(2x-10\right)x+\left(x-3\right)\times 2=3x
Use the distributive property to multiply x-5 by 2.
2x^{2}-10x+\left(x-3\right)\times 2=3x
Use the distributive property to multiply 2x-10 by x.
2x^{2}-10x+2x-6=3x
Use the distributive property to multiply x-3 by 2.
2x^{2}-8x-6=3x
Combine -10x and 2x to get -8x.
2x^{2}-8x-6-3x=0
Subtract 3x from both sides.
2x^{2}-11x-6=0
Combine -8x and -3x to get -11x.
2x^{2}-11x=6
Add 6 to both sides. Anything plus zero gives itself.
\frac{2x^{2}-11x}{2}=\frac{6}{2}
Divide both sides by 2.
x^{2}-\frac{11}{2}x=\frac{6}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-\frac{11}{2}x=3
Divide 6 by 2.
x^{2}-\frac{11}{2}x+\left(-\frac{11}{4}\right)^{2}=3+\left(-\frac{11}{4}\right)^{2}
Divide -\frac{11}{2}, the coefficient of the x term, by 2 to get -\frac{11}{4}. Then add the square of -\frac{11}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{11}{2}x+\frac{121}{16}=3+\frac{121}{16}
Square -\frac{11}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{11}{2}x+\frac{121}{16}=\frac{169}{16}
Add 3 to \frac{121}{16}.
\left(x-\frac{11}{4}\right)^{2}=\frac{169}{16}
Factor x^{2}-\frac{11}{2}x+\frac{121}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{4}\right)^{2}}=\sqrt{\frac{169}{16}}
Take the square root of both sides of the equation.
x-\frac{11}{4}=\frac{13}{4} x-\frac{11}{4}=-\frac{13}{4}
Simplify.
x=6 x=-\frac{1}{2}
Add \frac{11}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}