Solve for m
m=-\left(x+2\right)
x\neq 2
Solve for x
x=-\left(m+2\right)
m\neq -4
Graph
Share
Copied to clipboard
2x+\left(x-2\right)\left(-1\right)=-m
Multiply both sides of the equation by x-2, the least common multiple of x-2,2-x.
2x-x+2=-m
Use the distributive property to multiply x-2 by -1.
x+2=-m
Combine 2x and -x to get x.
-m=x+2
Swap sides so that all variable terms are on the left hand side.
\frac{-m}{-1}=\frac{x+2}{-1}
Divide both sides by -1.
m=\frac{x+2}{-1}
Dividing by -1 undoes the multiplication by -1.
m=-\left(x+2\right)
Divide x+2 by -1.
2x+\left(x-2\right)\left(-1\right)=-m
Variable x cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by x-2, the least common multiple of x-2,2-x.
2x-x+2=-m
Use the distributive property to multiply x-2 by -1.
x+2=-m
Combine 2x and -x to get x.
x=-m-2
Subtract 2 from both sides.
x=-m-2\text{, }x\neq 2
Variable x cannot be equal to 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}