Solve for x
x=-2
Graph
Share
Copied to clipboard
\left(x-3\right)\times 2x-\left(x-2\right)\left(x+2\right)=\left(x-3\right)\left(x-2\right)
Variable x cannot be equal to any of the values 2,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x-2\right), the least common multiple of x-2,x-3.
\left(2x-6\right)x-\left(x-2\right)\left(x+2\right)=\left(x-3\right)\left(x-2\right)
Use the distributive property to multiply x-3 by 2.
2x^{2}-6x-\left(x-2\right)\left(x+2\right)=\left(x-3\right)\left(x-2\right)
Use the distributive property to multiply 2x-6 by x.
2x^{2}-6x-\left(x^{2}-4\right)=\left(x-3\right)\left(x-2\right)
Consider \left(x-2\right)\left(x+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
2x^{2}-6x-x^{2}+4=\left(x-3\right)\left(x-2\right)
To find the opposite of x^{2}-4, find the opposite of each term.
x^{2}-6x+4=\left(x-3\right)\left(x-2\right)
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}-6x+4=x^{2}-5x+6
Use the distributive property to multiply x-3 by x-2 and combine like terms.
x^{2}-6x+4-x^{2}=-5x+6
Subtract x^{2} from both sides.
-6x+4=-5x+6
Combine x^{2} and -x^{2} to get 0.
-6x+4+5x=6
Add 5x to both sides.
-x+4=6
Combine -6x and 5x to get -x.
-x=6-4
Subtract 4 from both sides.
-x=2
Subtract 4 from 6 to get 2.
x=-2
Multiply both sides by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}