Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2x}{\left(x-3\right)\left(x+3\right)}+\frac{1}{3-x}
Factor x^{2}-9.
\frac{2x}{\left(x-3\right)\left(x+3\right)}+\frac{-\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(x+3\right) and 3-x is \left(x-3\right)\left(x+3\right). Multiply \frac{1}{3-x} times \frac{-\left(x+3\right)}{-\left(x+3\right)}.
\frac{2x-\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}
Since \frac{2x}{\left(x-3\right)\left(x+3\right)} and \frac{-\left(x+3\right)}{\left(x-3\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{2x-x-3}{\left(x-3\right)\left(x+3\right)}
Do the multiplications in 2x-\left(x+3\right).
\frac{x-3}{\left(x-3\right)\left(x+3\right)}
Combine like terms in 2x-x-3.
\frac{1}{x+3}
Cancel out x-3 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x}{\left(x-3\right)\left(x+3\right)}+\frac{1}{3-x})
Factor x^{2}-9.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x}{\left(x-3\right)\left(x+3\right)}+\frac{-\left(x+3\right)}{\left(x-3\right)\left(x+3\right)})
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(x+3\right) and 3-x is \left(x-3\right)\left(x+3\right). Multiply \frac{1}{3-x} times \frac{-\left(x+3\right)}{-\left(x+3\right)}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x-\left(x+3\right)}{\left(x-3\right)\left(x+3\right)})
Since \frac{2x}{\left(x-3\right)\left(x+3\right)} and \frac{-\left(x+3\right)}{\left(x-3\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x-x-3}{\left(x-3\right)\left(x+3\right)})
Do the multiplications in 2x-\left(x+3\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x-3}{\left(x-3\right)\left(x+3\right)})
Combine like terms in 2x-x-3.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x+3})
Cancel out x-3 in both numerator and denominator.
-\left(x^{1}+3\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+3)
If F is the composition of two differentiable functions f\left(u\right) and u=g\left(x\right), that is, if F\left(x\right)=f\left(g\left(x\right)\right), then the derivative of F is the derivative of f with respect to u times the derivative of g with respect to x, that is, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(x^{1}+3\right)^{-2}x^{1-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-x^{0}\left(x^{1}+3\right)^{-2}
Simplify.
-x^{0}\left(x+3\right)^{-2}
For any term t, t^{1}=t.
-\left(x+3\right)^{-2}
For any term t except 0, t^{0}=1.