Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2x}{\left(x-1\right)\left(x+1\right)}+\frac{-x}{\left(x+1\right)^{2}}-\frac{4x}{\left(x-1\right)\left(x^{2}+2x+1\right)}
Factor x^{2}-1. Factor x^{2}+2x+1.
\frac{2x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)^{2}}+\frac{\left(-x\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)^{2}}-\frac{4x}{\left(x-1\right)\left(x^{2}+2x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+1\right) and \left(x+1\right)^{2} is \left(x-1\right)\left(x+1\right)^{2}. Multiply \frac{2x}{\left(x-1\right)\left(x+1\right)} times \frac{x+1}{x+1}. Multiply \frac{-x}{\left(x+1\right)^{2}} times \frac{x-1}{x-1}.
\frac{2x\left(x+1\right)+\left(-x\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)^{2}}-\frac{4x}{\left(x-1\right)\left(x^{2}+2x+1\right)}
Since \frac{2x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)^{2}} and \frac{\left(-x\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{2x^{2}+2x-x^{2}+x}{\left(x-1\right)\left(x+1\right)^{2}}-\frac{4x}{\left(x-1\right)\left(x^{2}+2x+1\right)}
Do the multiplications in 2x\left(x+1\right)+\left(-x\right)\left(x-1\right).
\frac{x^{2}+3x}{\left(x-1\right)\left(x+1\right)^{2}}-\frac{4x}{\left(x-1\right)\left(x^{2}+2x+1\right)}
Combine like terms in 2x^{2}+2x-x^{2}+x.
\frac{x^{2}+3x}{\left(x-1\right)\left(x+1\right)^{2}}-\frac{4x}{\left(x-1\right)\left(x+1\right)^{2}}
Factor \left(x-1\right)\left(x^{2}+2x+1\right).
\frac{x^{2}+3x-4x}{\left(x-1\right)\left(x+1\right)^{2}}
Since \frac{x^{2}+3x}{\left(x-1\right)\left(x+1\right)^{2}} and \frac{4x}{\left(x-1\right)\left(x+1\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-x}{\left(x-1\right)\left(x+1\right)^{2}}
Combine like terms in x^{2}+3x-4x.
\frac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)^{2}}
Factor the expressions that are not already factored in \frac{x^{2}-x}{\left(x-1\right)\left(x+1\right)^{2}}.
\frac{x}{\left(x+1\right)^{2}}
Cancel out x-1 in both numerator and denominator.
\frac{x}{x^{2}+2x+1}
Expand \left(x+1\right)^{2}.
\frac{2x}{\left(x-1\right)\left(x+1\right)}+\frac{-x}{\left(x+1\right)^{2}}-\frac{4x}{\left(x-1\right)\left(x^{2}+2x+1\right)}
Factor x^{2}-1. Factor x^{2}+2x+1.
\frac{2x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)^{2}}+\frac{\left(-x\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)^{2}}-\frac{4x}{\left(x-1\right)\left(x^{2}+2x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+1\right) and \left(x+1\right)^{2} is \left(x-1\right)\left(x+1\right)^{2}. Multiply \frac{2x}{\left(x-1\right)\left(x+1\right)} times \frac{x+1}{x+1}. Multiply \frac{-x}{\left(x+1\right)^{2}} times \frac{x-1}{x-1}.
\frac{2x\left(x+1\right)+\left(-x\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)^{2}}-\frac{4x}{\left(x-1\right)\left(x^{2}+2x+1\right)}
Since \frac{2x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)^{2}} and \frac{\left(-x\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{2x^{2}+2x-x^{2}+x}{\left(x-1\right)\left(x+1\right)^{2}}-\frac{4x}{\left(x-1\right)\left(x^{2}+2x+1\right)}
Do the multiplications in 2x\left(x+1\right)+\left(-x\right)\left(x-1\right).
\frac{x^{2}+3x}{\left(x-1\right)\left(x+1\right)^{2}}-\frac{4x}{\left(x-1\right)\left(x^{2}+2x+1\right)}
Combine like terms in 2x^{2}+2x-x^{2}+x.
\frac{x^{2}+3x}{\left(x-1\right)\left(x+1\right)^{2}}-\frac{4x}{\left(x-1\right)\left(x+1\right)^{2}}
Factor \left(x-1\right)\left(x^{2}+2x+1\right).
\frac{x^{2}+3x-4x}{\left(x-1\right)\left(x+1\right)^{2}}
Since \frac{x^{2}+3x}{\left(x-1\right)\left(x+1\right)^{2}} and \frac{4x}{\left(x-1\right)\left(x+1\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-x}{\left(x-1\right)\left(x+1\right)^{2}}
Combine like terms in x^{2}+3x-4x.
\frac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)^{2}}
Factor the expressions that are not already factored in \frac{x^{2}-x}{\left(x-1\right)\left(x+1\right)^{2}}.
\frac{x}{\left(x+1\right)^{2}}
Cancel out x-1 in both numerator and denominator.
\frac{x}{x^{2}+2x+1}
Expand \left(x+1\right)^{2}.