Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{3x^{2}+3}{x^{2}-9}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+3 and x-3 is \left(x-3\right)\left(x+3\right). Multiply \frac{2x}{x+3} times \frac{x-3}{x-3}. Multiply \frac{x}{x-3} times \frac{x+3}{x+3}.
\frac{2x\left(x-3\right)+x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{3x^{2}+3}{x^{2}-9}
Since \frac{2x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)} and \frac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{2x^{2}-6x+x^{2}+3x}{\left(x-3\right)\left(x+3\right)}-\frac{3x^{2}+3}{x^{2}-9}
Do the multiplications in 2x\left(x-3\right)+x\left(x+3\right).
\frac{3x^{2}-3x}{\left(x-3\right)\left(x+3\right)}-\frac{3x^{2}+3}{x^{2}-9}
Combine like terms in 2x^{2}-6x+x^{2}+3x.
\frac{3x^{2}-3x}{\left(x-3\right)\left(x+3\right)}-\frac{3x^{2}+3}{\left(x-3\right)\left(x+3\right)}
Factor x^{2}-9.
\frac{3x^{2}-3x-\left(3x^{2}+3\right)}{\left(x-3\right)\left(x+3\right)}
Since \frac{3x^{2}-3x}{\left(x-3\right)\left(x+3\right)} and \frac{3x^{2}+3}{\left(x-3\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x^{2}-3x-3x^{2}-3}{\left(x-3\right)\left(x+3\right)}
Do the multiplications in 3x^{2}-3x-\left(3x^{2}+3\right).
\frac{-3x-3}{\left(x-3\right)\left(x+3\right)}
Combine like terms in 3x^{2}-3x-3x^{2}-3.
\frac{-3x-3}{x^{2}-9}
Expand \left(x-3\right)\left(x+3\right).
\frac{2x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{3x^{2}+3}{x^{2}-9}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+3 and x-3 is \left(x-3\right)\left(x+3\right). Multiply \frac{2x}{x+3} times \frac{x-3}{x-3}. Multiply \frac{x}{x-3} times \frac{x+3}{x+3}.
\frac{2x\left(x-3\right)+x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{3x^{2}+3}{x^{2}-9}
Since \frac{2x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)} and \frac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{2x^{2}-6x+x^{2}+3x}{\left(x-3\right)\left(x+3\right)}-\frac{3x^{2}+3}{x^{2}-9}
Do the multiplications in 2x\left(x-3\right)+x\left(x+3\right).
\frac{3x^{2}-3x}{\left(x-3\right)\left(x+3\right)}-\frac{3x^{2}+3}{x^{2}-9}
Combine like terms in 2x^{2}-6x+x^{2}+3x.
\frac{3x^{2}-3x}{\left(x-3\right)\left(x+3\right)}-\frac{3x^{2}+3}{\left(x-3\right)\left(x+3\right)}
Factor x^{2}-9.
\frac{3x^{2}-3x-\left(3x^{2}+3\right)}{\left(x-3\right)\left(x+3\right)}
Since \frac{3x^{2}-3x}{\left(x-3\right)\left(x+3\right)} and \frac{3x^{2}+3}{\left(x-3\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x^{2}-3x-3x^{2}-3}{\left(x-3\right)\left(x+3\right)}
Do the multiplications in 3x^{2}-3x-\left(3x^{2}+3\right).
\frac{-3x-3}{\left(x-3\right)\left(x+3\right)}
Combine like terms in 3x^{2}-3x-3x^{2}-3.
\frac{-3x-3}{x^{2}-9}
Expand \left(x-3\right)\left(x+3\right).