Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2x\left(x-5\right)}{\left(x-5\right)\left(x+2\right)}+\frac{\left(x-1\right)\left(x+2\right)}{\left(x-5\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+2 and x-5 is \left(x-5\right)\left(x+2\right). Multiply \frac{2x}{x+2} times \frac{x-5}{x-5}. Multiply \frac{x-1}{x-5} times \frac{x+2}{x+2}.
\frac{2x\left(x-5\right)+\left(x-1\right)\left(x+2\right)}{\left(x-5\right)\left(x+2\right)}
Since \frac{2x\left(x-5\right)}{\left(x-5\right)\left(x+2\right)} and \frac{\left(x-1\right)\left(x+2\right)}{\left(x-5\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{2x^{2}-10x+x^{2}+2x-x-2}{\left(x-5\right)\left(x+2\right)}
Do the multiplications in 2x\left(x-5\right)+\left(x-1\right)\left(x+2\right).
\frac{3x^{2}-9x-2}{\left(x-5\right)\left(x+2\right)}
Combine like terms in 2x^{2}-10x+x^{2}+2x-x-2.
\frac{3x^{2}-9x-2}{x^{2}-3x-10}
Expand \left(x-5\right)\left(x+2\right).
\frac{2x\left(x-5\right)}{\left(x-5\right)\left(x+2\right)}+\frac{\left(x-1\right)\left(x+2\right)}{\left(x-5\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+2 and x-5 is \left(x-5\right)\left(x+2\right). Multiply \frac{2x}{x+2} times \frac{x-5}{x-5}. Multiply \frac{x-1}{x-5} times \frac{x+2}{x+2}.
\frac{2x\left(x-5\right)+\left(x-1\right)\left(x+2\right)}{\left(x-5\right)\left(x+2\right)}
Since \frac{2x\left(x-5\right)}{\left(x-5\right)\left(x+2\right)} and \frac{\left(x-1\right)\left(x+2\right)}{\left(x-5\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{2x^{2}-10x+x^{2}+2x-x-2}{\left(x-5\right)\left(x+2\right)}
Do the multiplications in 2x\left(x-5\right)+\left(x-1\right)\left(x+2\right).
\frac{3x^{2}-9x-2}{\left(x-5\right)\left(x+2\right)}
Combine like terms in 2x^{2}-10x+x^{2}+2x-x-2.
\frac{3x^{2}-9x-2}{x^{2}-3x-10}
Expand \left(x-5\right)\left(x+2\right).