Solve for m
m=x^{2}-2x-2
x\neq -1\text{ and }x\neq 0
Solve for x (complex solution)
\left\{\begin{matrix}\\x=\sqrt{m+3}+1\text{, }&\text{unconditionally}\\x=-\sqrt{m+3}+1\text{, }&m\neq 1\text{ and }m\neq -2\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\sqrt{m+3}+1\text{, }&m\neq 1\text{ and }m\geq -3\text{ and }m\neq -2\\x=\sqrt{m+3}+1\text{, }&m\geq -3\end{matrix}\right.
Graph
Share
Copied to clipboard
x\times 2x-\left(m+1\right)=\left(x+1\right)\left(x+1\right)
Multiply both sides of the equation by x\left(x+1\right), the least common multiple of x+1,x^{2}+x,x.
x\times 2x-\left(m+1\right)=\left(x+1\right)^{2}
Multiply x+1 and x+1 to get \left(x+1\right)^{2}.
x^{2}\times 2-\left(m+1\right)=\left(x+1\right)^{2}
Multiply x and x to get x^{2}.
x^{2}\times 2-m-1=\left(x+1\right)^{2}
To find the opposite of m+1, find the opposite of each term.
x^{2}\times 2-m-1=x^{2}+2x+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
-m-1=x^{2}+2x+1-x^{2}\times 2
Subtract x^{2}\times 2 from both sides.
-m-1=-x^{2}+2x+1
Combine x^{2} and -x^{2}\times 2 to get -x^{2}.
-m=-x^{2}+2x+1+1
Add 1 to both sides.
-m=-x^{2}+2x+2
Add 1 and 1 to get 2.
-m=2+2x-x^{2}
The equation is in standard form.
\frac{-m}{-1}=\frac{2+2x-x^{2}}{-1}
Divide both sides by -1.
m=\frac{2+2x-x^{2}}{-1}
Dividing by -1 undoes the multiplication by -1.
m=x^{2}-2x-2
Divide -x^{2}+2x+2 by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}