Solve for x
x=-\frac{m\left(m-2\right)}{2\left(4-m\right)}
m\neq 4\text{ and }m\neq 2
Solve for m (complex solution)
\left\{\begin{matrix}\\m=-\sqrt{x^{2}-6x+1}+x+1\text{, }&\text{unconditionally}\\m=\sqrt{x^{2}-6x+1}+x+1\text{, }&x\neq 0\end{matrix}\right.
Solve for m
\left\{\begin{matrix}m=-\sqrt{x^{2}-6x+1}+x+1\text{, }&x\geq 2\sqrt{2}+3\text{ or }x\leq 3-2\sqrt{2}\\m=\sqrt{x^{2}-6x+1}+x+1\text{, }&x\geq 2\sqrt{2}+3\text{ or }\left(x\neq 0\text{ and }x\leq 3-2\sqrt{2}\right)\end{matrix}\right.
Graph
Share
Copied to clipboard
2\times 2x+\left(m-2\right)m=x\times 2\left(m-2\right)
Multiply both sides of the equation by 2\left(m-2\right), the least common multiple of m-2,2.
4x+\left(m-2\right)m=x\times 2\left(m-2\right)
Multiply 2 and 2 to get 4.
4x+m^{2}-2m=x\times 2\left(m-2\right)
Use the distributive property to multiply m-2 by m.
4x+m^{2}-2m=2xm-2x\times 2
Use the distributive property to multiply x\times 2 by m-2.
4x+m^{2}-2m=2xm-4x
Multiply -2 and 2 to get -4.
4x+m^{2}-2m-2xm=-4x
Subtract 2xm from both sides.
4x+m^{2}-2m-2xm+4x=0
Add 4x to both sides.
8x+m^{2}-2m-2xm=0
Combine 4x and 4x to get 8x.
8x-2m-2xm=-m^{2}
Subtract m^{2} from both sides. Anything subtracted from zero gives its negation.
8x-2xm=-m^{2}+2m
Add 2m to both sides.
\left(8-2m\right)x=-m^{2}+2m
Combine all terms containing x.
\left(8-2m\right)x=2m-m^{2}
The equation is in standard form.
\frac{\left(8-2m\right)x}{8-2m}=\frac{m\left(2-m\right)}{8-2m}
Divide both sides by 8-2m.
x=\frac{m\left(2-m\right)}{8-2m}
Dividing by 8-2m undoes the multiplication by 8-2m.
x=\frac{m\left(2-m\right)}{2\left(4-m\right)}
Divide m\left(2-m\right) by 8-2m.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}