Evaluate
\frac{2s+5b+15}{\left(b+5\right)\left(s+b\right)}
Differentiate w.r.t. s
-\frac{3}{\left(s+b\right)^{2}}
Share
Copied to clipboard
\frac{2x}{x\left(b+5\right)}+\frac{3y}{sy+by}
Factor the expressions that are not already factored in \frac{2x}{5x+bx}.
\frac{2}{b+5}+\frac{3y}{sy+by}
Cancel out x in both numerator and denominator.
\frac{2}{b+5}+\frac{3y}{y\left(b+s\right)}
Factor the expressions that are not already factored in \frac{3y}{sy+by}.
\frac{2}{b+5}+\frac{3}{s+b}
Cancel out y in both numerator and denominator.
\frac{2\left(s+b\right)}{\left(b+5\right)\left(s+b\right)}+\frac{3\left(b+5\right)}{\left(b+5\right)\left(s+b\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b+5 and s+b is \left(b+5\right)\left(s+b\right). Multiply \frac{2}{b+5} times \frac{s+b}{s+b}. Multiply \frac{3}{s+b} times \frac{b+5}{b+5}.
\frac{2\left(s+b\right)+3\left(b+5\right)}{\left(b+5\right)\left(s+b\right)}
Since \frac{2\left(s+b\right)}{\left(b+5\right)\left(s+b\right)} and \frac{3\left(b+5\right)}{\left(b+5\right)\left(s+b\right)} have the same denominator, add them by adding their numerators.
\frac{2s+2b+3b+15}{\left(b+5\right)\left(s+b\right)}
Do the multiplications in 2\left(s+b\right)+3\left(b+5\right).
\frac{2s+5b+15}{\left(b+5\right)\left(s+b\right)}
Combine like terms in 2s+2b+3b+15.
\frac{2s+5b+15}{bs+5s+b^{2}+5b}
Expand \left(b+5\right)\left(s+b\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}