Evaluate
\frac{1}{x}
Expand
\frac{1}{x}
Graph
Share
Copied to clipboard
\frac{2x}{\left(2x-3a\right)\left(2x+3a\right)}+\frac{x+3a}{2x\left(2x+3a\right)}+\frac{x-3a}{4x^{2}-6ax}
Factor 4x^{2}-9a^{2}. Factor 4x^{2}+6ax.
\frac{2x\times 2x}{2x\left(2x-3a\right)\left(2x+3a\right)}+\frac{\left(x+3a\right)\left(2x-3a\right)}{2x\left(2x-3a\right)\left(2x+3a\right)}+\frac{x-3a}{4x^{2}-6ax}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(2x-3a\right)\left(2x+3a\right) and 2x\left(2x+3a\right) is 2x\left(2x-3a\right)\left(2x+3a\right). Multiply \frac{2x}{\left(2x-3a\right)\left(2x+3a\right)} times \frac{2x}{2x}. Multiply \frac{x+3a}{2x\left(2x+3a\right)} times \frac{2x-3a}{2x-3a}.
\frac{2x\times 2x+\left(x+3a\right)\left(2x-3a\right)}{2x\left(2x-3a\right)\left(2x+3a\right)}+\frac{x-3a}{4x^{2}-6ax}
Since \frac{2x\times 2x}{2x\left(2x-3a\right)\left(2x+3a\right)} and \frac{\left(x+3a\right)\left(2x-3a\right)}{2x\left(2x-3a\right)\left(2x+3a\right)} have the same denominator, add them by adding their numerators.
\frac{4x^{2}+2x^{2}-3xa+6ax-9a^{2}}{2x\left(2x-3a\right)\left(2x+3a\right)}+\frac{x-3a}{4x^{2}-6ax}
Do the multiplications in 2x\times 2x+\left(x+3a\right)\left(2x-3a\right).
\frac{6x^{2}-9a^{2}+3xa}{2x\left(2x-3a\right)\left(2x+3a\right)}+\frac{x-3a}{4x^{2}-6ax}
Combine like terms in 4x^{2}+2x^{2}-3xa+6ax-9a^{2}.
\frac{3\left(x-a\right)\left(2x+3a\right)}{2x\left(2x-3a\right)\left(2x+3a\right)}+\frac{x-3a}{4x^{2}-6ax}
Factor the expressions that are not already factored in \frac{6x^{2}-9a^{2}+3xa}{2x\left(2x-3a\right)\left(2x+3a\right)}.
\frac{3\left(x-a\right)}{2x\left(2x-3a\right)}+\frac{x-3a}{4x^{2}-6ax}
Cancel out 2x+3a in both numerator and denominator.
\frac{3\left(x-a\right)}{2x\left(2x-3a\right)}+\frac{x-3a}{2x\left(2x-3a\right)}
Factor 4x^{2}-6ax.
\frac{3\left(x-a\right)+x-3a}{2x\left(2x-3a\right)}
Since \frac{3\left(x-a\right)}{2x\left(2x-3a\right)} and \frac{x-3a}{2x\left(2x-3a\right)} have the same denominator, add them by adding their numerators.
\frac{3x-3a+x-3a}{2x\left(2x-3a\right)}
Do the multiplications in 3\left(x-a\right)+x-3a.
\frac{4x-6a}{2x\left(2x-3a\right)}
Combine like terms in 3x-3a+x-3a.
\frac{2\left(2x-3a\right)}{2x\left(2x-3a\right)}
Factor the expressions that are not already factored in \frac{4x-6a}{2x\left(2x-3a\right)}.
\frac{1}{x}
Cancel out 2\left(2x-3a\right) in both numerator and denominator.
\frac{2x}{\left(2x-3a\right)\left(2x+3a\right)}+\frac{x+3a}{2x\left(2x+3a\right)}+\frac{x-3a}{4x^{2}-6ax}
Factor 4x^{2}-9a^{2}. Factor 4x^{2}+6ax.
\frac{2x\times 2x}{2x\left(2x-3a\right)\left(2x+3a\right)}+\frac{\left(x+3a\right)\left(2x-3a\right)}{2x\left(2x-3a\right)\left(2x+3a\right)}+\frac{x-3a}{4x^{2}-6ax}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(2x-3a\right)\left(2x+3a\right) and 2x\left(2x+3a\right) is 2x\left(2x-3a\right)\left(2x+3a\right). Multiply \frac{2x}{\left(2x-3a\right)\left(2x+3a\right)} times \frac{2x}{2x}. Multiply \frac{x+3a}{2x\left(2x+3a\right)} times \frac{2x-3a}{2x-3a}.
\frac{2x\times 2x+\left(x+3a\right)\left(2x-3a\right)}{2x\left(2x-3a\right)\left(2x+3a\right)}+\frac{x-3a}{4x^{2}-6ax}
Since \frac{2x\times 2x}{2x\left(2x-3a\right)\left(2x+3a\right)} and \frac{\left(x+3a\right)\left(2x-3a\right)}{2x\left(2x-3a\right)\left(2x+3a\right)} have the same denominator, add them by adding their numerators.
\frac{4x^{2}+2x^{2}-3xa+6ax-9a^{2}}{2x\left(2x-3a\right)\left(2x+3a\right)}+\frac{x-3a}{4x^{2}-6ax}
Do the multiplications in 2x\times 2x+\left(x+3a\right)\left(2x-3a\right).
\frac{6x^{2}-9a^{2}+3xa}{2x\left(2x-3a\right)\left(2x+3a\right)}+\frac{x-3a}{4x^{2}-6ax}
Combine like terms in 4x^{2}+2x^{2}-3xa+6ax-9a^{2}.
\frac{3\left(x-a\right)\left(2x+3a\right)}{2x\left(2x-3a\right)\left(2x+3a\right)}+\frac{x-3a}{4x^{2}-6ax}
Factor the expressions that are not already factored in \frac{6x^{2}-9a^{2}+3xa}{2x\left(2x-3a\right)\left(2x+3a\right)}.
\frac{3\left(x-a\right)}{2x\left(2x-3a\right)}+\frac{x-3a}{4x^{2}-6ax}
Cancel out 2x+3a in both numerator and denominator.
\frac{3\left(x-a\right)}{2x\left(2x-3a\right)}+\frac{x-3a}{2x\left(2x-3a\right)}
Factor 4x^{2}-6ax.
\frac{3\left(x-a\right)+x-3a}{2x\left(2x-3a\right)}
Since \frac{3\left(x-a\right)}{2x\left(2x-3a\right)} and \frac{x-3a}{2x\left(2x-3a\right)} have the same denominator, add them by adding their numerators.
\frac{3x-3a+x-3a}{2x\left(2x-3a\right)}
Do the multiplications in 3\left(x-a\right)+x-3a.
\frac{4x-6a}{2x\left(2x-3a\right)}
Combine like terms in 3x-3a+x-3a.
\frac{2\left(2x-3a\right)}{2x\left(2x-3a\right)}
Factor the expressions that are not already factored in \frac{4x-6a}{2x\left(2x-3a\right)}.
\frac{1}{x}
Cancel out 2\left(2x-3a\right) in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}