Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2x}{\left(2x-3a\right)\left(2x+3a\right)}+\frac{x+3a}{2x\left(2x+3a\right)}+\frac{x-3a}{4x^{2}-6ax}
Factor 4x^{2}-9a^{2}. Factor 4x^{2}+6ax.
\frac{2x\times 2x}{2x\left(2x-3a\right)\left(2x+3a\right)}+\frac{\left(x+3a\right)\left(2x-3a\right)}{2x\left(2x-3a\right)\left(2x+3a\right)}+\frac{x-3a}{4x^{2}-6ax}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(2x-3a\right)\left(2x+3a\right) and 2x\left(2x+3a\right) is 2x\left(2x-3a\right)\left(2x+3a\right). Multiply \frac{2x}{\left(2x-3a\right)\left(2x+3a\right)} times \frac{2x}{2x}. Multiply \frac{x+3a}{2x\left(2x+3a\right)} times \frac{2x-3a}{2x-3a}.
\frac{2x\times 2x+\left(x+3a\right)\left(2x-3a\right)}{2x\left(2x-3a\right)\left(2x+3a\right)}+\frac{x-3a}{4x^{2}-6ax}
Since \frac{2x\times 2x}{2x\left(2x-3a\right)\left(2x+3a\right)} and \frac{\left(x+3a\right)\left(2x-3a\right)}{2x\left(2x-3a\right)\left(2x+3a\right)} have the same denominator, add them by adding their numerators.
\frac{4x^{2}+2x^{2}-3xa+6ax-9a^{2}}{2x\left(2x-3a\right)\left(2x+3a\right)}+\frac{x-3a}{4x^{2}-6ax}
Do the multiplications in 2x\times 2x+\left(x+3a\right)\left(2x-3a\right).
\frac{6x^{2}-9a^{2}+3xa}{2x\left(2x-3a\right)\left(2x+3a\right)}+\frac{x-3a}{4x^{2}-6ax}
Combine like terms in 4x^{2}+2x^{2}-3xa+6ax-9a^{2}.
\frac{3\left(x-a\right)\left(2x+3a\right)}{2x\left(2x-3a\right)\left(2x+3a\right)}+\frac{x-3a}{4x^{2}-6ax}
Factor the expressions that are not already factored in \frac{6x^{2}-9a^{2}+3xa}{2x\left(2x-3a\right)\left(2x+3a\right)}.
\frac{3\left(x-a\right)}{2x\left(2x-3a\right)}+\frac{x-3a}{4x^{2}-6ax}
Cancel out 2x+3a in both numerator and denominator.
\frac{3\left(x-a\right)}{2x\left(2x-3a\right)}+\frac{x-3a}{2x\left(2x-3a\right)}
Factor 4x^{2}-6ax.
\frac{3\left(x-a\right)+x-3a}{2x\left(2x-3a\right)}
Since \frac{3\left(x-a\right)}{2x\left(2x-3a\right)} and \frac{x-3a}{2x\left(2x-3a\right)} have the same denominator, add them by adding their numerators.
\frac{3x-3a+x-3a}{2x\left(2x-3a\right)}
Do the multiplications in 3\left(x-a\right)+x-3a.
\frac{4x-6a}{2x\left(2x-3a\right)}
Combine like terms in 3x-3a+x-3a.
\frac{2\left(2x-3a\right)}{2x\left(2x-3a\right)}
Factor the expressions that are not already factored in \frac{4x-6a}{2x\left(2x-3a\right)}.
\frac{1}{x}
Cancel out 2\left(2x-3a\right) in both numerator and denominator.
\frac{2x}{\left(2x-3a\right)\left(2x+3a\right)}+\frac{x+3a}{2x\left(2x+3a\right)}+\frac{x-3a}{4x^{2}-6ax}
Factor 4x^{2}-9a^{2}. Factor 4x^{2}+6ax.
\frac{2x\times 2x}{2x\left(2x-3a\right)\left(2x+3a\right)}+\frac{\left(x+3a\right)\left(2x-3a\right)}{2x\left(2x-3a\right)\left(2x+3a\right)}+\frac{x-3a}{4x^{2}-6ax}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(2x-3a\right)\left(2x+3a\right) and 2x\left(2x+3a\right) is 2x\left(2x-3a\right)\left(2x+3a\right). Multiply \frac{2x}{\left(2x-3a\right)\left(2x+3a\right)} times \frac{2x}{2x}. Multiply \frac{x+3a}{2x\left(2x+3a\right)} times \frac{2x-3a}{2x-3a}.
\frac{2x\times 2x+\left(x+3a\right)\left(2x-3a\right)}{2x\left(2x-3a\right)\left(2x+3a\right)}+\frac{x-3a}{4x^{2}-6ax}
Since \frac{2x\times 2x}{2x\left(2x-3a\right)\left(2x+3a\right)} and \frac{\left(x+3a\right)\left(2x-3a\right)}{2x\left(2x-3a\right)\left(2x+3a\right)} have the same denominator, add them by adding their numerators.
\frac{4x^{2}+2x^{2}-3xa+6ax-9a^{2}}{2x\left(2x-3a\right)\left(2x+3a\right)}+\frac{x-3a}{4x^{2}-6ax}
Do the multiplications in 2x\times 2x+\left(x+3a\right)\left(2x-3a\right).
\frac{6x^{2}-9a^{2}+3xa}{2x\left(2x-3a\right)\left(2x+3a\right)}+\frac{x-3a}{4x^{2}-6ax}
Combine like terms in 4x^{2}+2x^{2}-3xa+6ax-9a^{2}.
\frac{3\left(x-a\right)\left(2x+3a\right)}{2x\left(2x-3a\right)\left(2x+3a\right)}+\frac{x-3a}{4x^{2}-6ax}
Factor the expressions that are not already factored in \frac{6x^{2}-9a^{2}+3xa}{2x\left(2x-3a\right)\left(2x+3a\right)}.
\frac{3\left(x-a\right)}{2x\left(2x-3a\right)}+\frac{x-3a}{4x^{2}-6ax}
Cancel out 2x+3a in both numerator and denominator.
\frac{3\left(x-a\right)}{2x\left(2x-3a\right)}+\frac{x-3a}{2x\left(2x-3a\right)}
Factor 4x^{2}-6ax.
\frac{3\left(x-a\right)+x-3a}{2x\left(2x-3a\right)}
Since \frac{3\left(x-a\right)}{2x\left(2x-3a\right)} and \frac{x-3a}{2x\left(2x-3a\right)} have the same denominator, add them by adding their numerators.
\frac{3x-3a+x-3a}{2x\left(2x-3a\right)}
Do the multiplications in 3\left(x-a\right)+x-3a.
\frac{4x-6a}{2x\left(2x-3a\right)}
Combine like terms in 3x-3a+x-3a.
\frac{2\left(2x-3a\right)}{2x\left(2x-3a\right)}
Factor the expressions that are not already factored in \frac{4x-6a}{2x\left(2x-3a\right)}.
\frac{1}{x}
Cancel out 2\left(2x-3a\right) in both numerator and denominator.