Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2x}{2x+3}+\frac{5x+6}{\left(x+1\right)\left(2x+3\right)}
Factor 2x^{2}+5x+3.
\frac{2x\left(x+1\right)}{\left(x+1\right)\left(2x+3\right)}+\frac{5x+6}{\left(x+1\right)\left(2x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x+3 and \left(x+1\right)\left(2x+3\right) is \left(x+1\right)\left(2x+3\right). Multiply \frac{2x}{2x+3} times \frac{x+1}{x+1}.
\frac{2x\left(x+1\right)+5x+6}{\left(x+1\right)\left(2x+3\right)}
Since \frac{2x\left(x+1\right)}{\left(x+1\right)\left(2x+3\right)} and \frac{5x+6}{\left(x+1\right)\left(2x+3\right)} have the same denominator, add them by adding their numerators.
\frac{2x^{2}+2x+5x+6}{\left(x+1\right)\left(2x+3\right)}
Do the multiplications in 2x\left(x+1\right)+5x+6.
\frac{2x^{2}+7x+6}{\left(x+1\right)\left(2x+3\right)}
Combine like terms in 2x^{2}+2x+5x+6.
\frac{\left(x+2\right)\left(2x+3\right)}{\left(x+1\right)\left(2x+3\right)}
Factor the expressions that are not already factored in \frac{2x^{2}+7x+6}{\left(x+1\right)\left(2x+3\right)}.
\frac{x+2}{x+1}
Cancel out 2x+3 in both numerator and denominator.
\frac{2x}{2x+3}+\frac{5x+6}{\left(x+1\right)\left(2x+3\right)}
Factor 2x^{2}+5x+3.
\frac{2x\left(x+1\right)}{\left(x+1\right)\left(2x+3\right)}+\frac{5x+6}{\left(x+1\right)\left(2x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x+3 and \left(x+1\right)\left(2x+3\right) is \left(x+1\right)\left(2x+3\right). Multiply \frac{2x}{2x+3} times \frac{x+1}{x+1}.
\frac{2x\left(x+1\right)+5x+6}{\left(x+1\right)\left(2x+3\right)}
Since \frac{2x\left(x+1\right)}{\left(x+1\right)\left(2x+3\right)} and \frac{5x+6}{\left(x+1\right)\left(2x+3\right)} have the same denominator, add them by adding their numerators.
\frac{2x^{2}+2x+5x+6}{\left(x+1\right)\left(2x+3\right)}
Do the multiplications in 2x\left(x+1\right)+5x+6.
\frac{2x^{2}+7x+6}{\left(x+1\right)\left(2x+3\right)}
Combine like terms in 2x^{2}+2x+5x+6.
\frac{\left(x+2\right)\left(2x+3\right)}{\left(x+1\right)\left(2x+3\right)}
Factor the expressions that are not already factored in \frac{2x^{2}+7x+6}{\left(x+1\right)\left(2x+3\right)}.
\frac{x+2}{x+1}
Cancel out 2x+3 in both numerator and denominator.