Solve for x
x = \frac{\sqrt{593} + 25}{16} \approx 3.084474458
x=\frac{25-\sqrt{593}}{16}\approx 0.040525542
Graph
Share
Copied to clipboard
4\times 2xx-2x+x+1=24x
Multiply both sides of the equation by 4, the least common multiple of 2,4.
8xx-2x+x+1=24x
Multiply 4 and 2 to get 8.
8x^{2}-2x+x+1=24x
Multiply x and x to get x^{2}.
8x^{2}-x+1=24x
Combine -2x and x to get -x.
8x^{2}-x+1-24x=0
Subtract 24x from both sides.
8x^{2}-25x+1=0
Combine -x and -24x to get -25x.
x=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}-4\times 8}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, -25 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-25\right)±\sqrt{625-4\times 8}}{2\times 8}
Square -25.
x=\frac{-\left(-25\right)±\sqrt{625-32}}{2\times 8}
Multiply -4 times 8.
x=\frac{-\left(-25\right)±\sqrt{593}}{2\times 8}
Add 625 to -32.
x=\frac{25±\sqrt{593}}{2\times 8}
The opposite of -25 is 25.
x=\frac{25±\sqrt{593}}{16}
Multiply 2 times 8.
x=\frac{\sqrt{593}+25}{16}
Now solve the equation x=\frac{25±\sqrt{593}}{16} when ± is plus. Add 25 to \sqrt{593}.
x=\frac{25-\sqrt{593}}{16}
Now solve the equation x=\frac{25±\sqrt{593}}{16} when ± is minus. Subtract \sqrt{593} from 25.
x=\frac{\sqrt{593}+25}{16} x=\frac{25-\sqrt{593}}{16}
The equation is now solved.
4\times 2xx-2x+x+1=24x
Multiply both sides of the equation by 4, the least common multiple of 2,4.
8xx-2x+x+1=24x
Multiply 4 and 2 to get 8.
8x^{2}-2x+x+1=24x
Multiply x and x to get x^{2}.
8x^{2}-x+1=24x
Combine -2x and x to get -x.
8x^{2}-x+1-24x=0
Subtract 24x from both sides.
8x^{2}-25x+1=0
Combine -x and -24x to get -25x.
8x^{2}-25x=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
\frac{8x^{2}-25x}{8}=-\frac{1}{8}
Divide both sides by 8.
x^{2}-\frac{25}{8}x=-\frac{1}{8}
Dividing by 8 undoes the multiplication by 8.
x^{2}-\frac{25}{8}x+\left(-\frac{25}{16}\right)^{2}=-\frac{1}{8}+\left(-\frac{25}{16}\right)^{2}
Divide -\frac{25}{8}, the coefficient of the x term, by 2 to get -\frac{25}{16}. Then add the square of -\frac{25}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{25}{8}x+\frac{625}{256}=-\frac{1}{8}+\frac{625}{256}
Square -\frac{25}{16} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{25}{8}x+\frac{625}{256}=\frac{593}{256}
Add -\frac{1}{8} to \frac{625}{256} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{25}{16}\right)^{2}=\frac{593}{256}
Factor x^{2}-\frac{25}{8}x+\frac{625}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{25}{16}\right)^{2}}=\sqrt{\frac{593}{256}}
Take the square root of both sides of the equation.
x-\frac{25}{16}=\frac{\sqrt{593}}{16} x-\frac{25}{16}=-\frac{\sqrt{593}}{16}
Simplify.
x=\frac{\sqrt{593}+25}{16} x=\frac{25-\sqrt{593}}{16}
Add \frac{25}{16} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}