Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-\left(x+3\right)\times 2x+\left(x-2\right)\left(x+3\right)\left(-1\right)=\left(x-2\right)\left(-x\right)-5\left(1+2x\right)
Variable x cannot be equal to any of the values -3,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x+3\right), the least common multiple of x+3,6-x-x^{2}.
\left(-x-3\right)\times 2x+\left(x-2\right)\left(x+3\right)\left(-1\right)=\left(x-2\right)\left(-x\right)-5\left(1+2x\right)
To find the opposite of x+3, find the opposite of each term.
\left(-2x-6\right)x+\left(x-2\right)\left(x+3\right)\left(-1\right)=\left(x-2\right)\left(-x\right)-5\left(1+2x\right)
Use the distributive property to multiply -x-3 by 2.
-2x^{2}-6x+\left(x-2\right)\left(x+3\right)\left(-1\right)=\left(x-2\right)\left(-x\right)-5\left(1+2x\right)
Use the distributive property to multiply -2x-6 by x.
-2x^{2}-6x+\left(x^{2}+x-6\right)\left(-1\right)=\left(x-2\right)\left(-x\right)-5\left(1+2x\right)
Use the distributive property to multiply x-2 by x+3 and combine like terms.
-2x^{2}-6x-x^{2}-x+6=\left(x-2\right)\left(-x\right)-5\left(1+2x\right)
Use the distributive property to multiply x^{2}+x-6 by -1.
-3x^{2}-6x-x+6=\left(x-2\right)\left(-x\right)-5\left(1+2x\right)
Combine -2x^{2} and -x^{2} to get -3x^{2}.
-3x^{2}-7x+6=\left(x-2\right)\left(-x\right)-5\left(1+2x\right)
Combine -6x and -x to get -7x.
-3x^{2}-7x+6=x\left(-x\right)-2\left(-x\right)-5\left(1+2x\right)
Use the distributive property to multiply x-2 by -x.
-3x^{2}-7x+6=x\left(-x\right)+2x-5\left(1+2x\right)
Multiply -2 and -1 to get 2.
-3x^{2}-7x+6=x\left(-x\right)+2x-5-10x
Use the distributive property to multiply -5 by 1+2x.
-3x^{2}-7x+6=x\left(-x\right)-8x-5
Combine 2x and -10x to get -8x.
-3x^{2}-7x+6-x\left(-x\right)=-8x-5
Subtract x\left(-x\right) from both sides.
-3x^{2}-7x+6-x\left(-x\right)+8x=-5
Add 8x to both sides.
-3x^{2}-7x+6-x\left(-x\right)+8x+5=0
Add 5 to both sides.
-3x^{2}-7x+6-x^{2}\left(-1\right)+8x+5=0
Multiply x and x to get x^{2}.
-3x^{2}-7x+6+x^{2}+8x+5=0
Multiply -1 and -1 to get 1.
-2x^{2}-7x+6+8x+5=0
Combine -3x^{2} and x^{2} to get -2x^{2}.
-2x^{2}+x+6+5=0
Combine -7x and 8x to get x.
-2x^{2}+x+11=0
Add 6 and 5 to get 11.
x=\frac{-1±\sqrt{1^{2}-4\left(-2\right)\times 11}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 1 for b, and 11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-2\right)\times 11}}{2\left(-2\right)}
Square 1.
x=\frac{-1±\sqrt{1+8\times 11}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-1±\sqrt{1+88}}{2\left(-2\right)}
Multiply 8 times 11.
x=\frac{-1±\sqrt{89}}{2\left(-2\right)}
Add 1 to 88.
x=\frac{-1±\sqrt{89}}{-4}
Multiply 2 times -2.
x=\frac{\sqrt{89}-1}{-4}
Now solve the equation x=\frac{-1±\sqrt{89}}{-4} when ± is plus. Add -1 to \sqrt{89}.
x=\frac{1-\sqrt{89}}{4}
Divide -1+\sqrt{89} by -4.
x=\frac{-\sqrt{89}-1}{-4}
Now solve the equation x=\frac{-1±\sqrt{89}}{-4} when ± is minus. Subtract \sqrt{89} from -1.
x=\frac{\sqrt{89}+1}{4}
Divide -1-\sqrt{89} by -4.
x=\frac{1-\sqrt{89}}{4} x=\frac{\sqrt{89}+1}{4}
The equation is now solved.
-\left(x+3\right)\times 2x+\left(x-2\right)\left(x+3\right)\left(-1\right)=\left(x-2\right)\left(-x\right)-5\left(1+2x\right)
Variable x cannot be equal to any of the values -3,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x+3\right), the least common multiple of x+3,6-x-x^{2}.
\left(-x-3\right)\times 2x+\left(x-2\right)\left(x+3\right)\left(-1\right)=\left(x-2\right)\left(-x\right)-5\left(1+2x\right)
To find the opposite of x+3, find the opposite of each term.
\left(-2x-6\right)x+\left(x-2\right)\left(x+3\right)\left(-1\right)=\left(x-2\right)\left(-x\right)-5\left(1+2x\right)
Use the distributive property to multiply -x-3 by 2.
-2x^{2}-6x+\left(x-2\right)\left(x+3\right)\left(-1\right)=\left(x-2\right)\left(-x\right)-5\left(1+2x\right)
Use the distributive property to multiply -2x-6 by x.
-2x^{2}-6x+\left(x^{2}+x-6\right)\left(-1\right)=\left(x-2\right)\left(-x\right)-5\left(1+2x\right)
Use the distributive property to multiply x-2 by x+3 and combine like terms.
-2x^{2}-6x-x^{2}-x+6=\left(x-2\right)\left(-x\right)-5\left(1+2x\right)
Use the distributive property to multiply x^{2}+x-6 by -1.
-3x^{2}-6x-x+6=\left(x-2\right)\left(-x\right)-5\left(1+2x\right)
Combine -2x^{2} and -x^{2} to get -3x^{2}.
-3x^{2}-7x+6=\left(x-2\right)\left(-x\right)-5\left(1+2x\right)
Combine -6x and -x to get -7x.
-3x^{2}-7x+6=x\left(-x\right)-2\left(-x\right)-5\left(1+2x\right)
Use the distributive property to multiply x-2 by -x.
-3x^{2}-7x+6=x\left(-x\right)+2x-5\left(1+2x\right)
Multiply -2 and -1 to get 2.
-3x^{2}-7x+6=x\left(-x\right)+2x-5-10x
Use the distributive property to multiply -5 by 1+2x.
-3x^{2}-7x+6=x\left(-x\right)-8x-5
Combine 2x and -10x to get -8x.
-3x^{2}-7x+6-x\left(-x\right)=-8x-5
Subtract x\left(-x\right) from both sides.
-3x^{2}-7x+6-x\left(-x\right)+8x=-5
Add 8x to both sides.
-3x^{2}-7x+6-x^{2}\left(-1\right)+8x=-5
Multiply x and x to get x^{2}.
-3x^{2}-7x+6+x^{2}+8x=-5
Multiply -1 and -1 to get 1.
-2x^{2}-7x+6+8x=-5
Combine -3x^{2} and x^{2} to get -2x^{2}.
-2x^{2}+x+6=-5
Combine -7x and 8x to get x.
-2x^{2}+x=-5-6
Subtract 6 from both sides.
-2x^{2}+x=-11
Subtract 6 from -5 to get -11.
\frac{-2x^{2}+x}{-2}=-\frac{11}{-2}
Divide both sides by -2.
x^{2}+\frac{1}{-2}x=-\frac{11}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-\frac{1}{2}x=-\frac{11}{-2}
Divide 1 by -2.
x^{2}-\frac{1}{2}x=\frac{11}{2}
Divide -11 by -2.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\frac{11}{2}+\left(-\frac{1}{4}\right)^{2}
Divide -\frac{1}{2}, the coefficient of the x term, by 2 to get -\frac{1}{4}. Then add the square of -\frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{11}{2}+\frac{1}{16}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{89}{16}
Add \frac{11}{2} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{4}\right)^{2}=\frac{89}{16}
Factor x^{2}-\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{89}{16}}
Take the square root of both sides of the equation.
x-\frac{1}{4}=\frac{\sqrt{89}}{4} x-\frac{1}{4}=-\frac{\sqrt{89}}{4}
Simplify.
x=\frac{\sqrt{89}+1}{4} x=\frac{1-\sqrt{89}}{4}
Add \frac{1}{4} to both sides of the equation.