Evaluate
\frac{8x^{2}}{16-3x}
Differentiate w.r.t. x
-\frac{8x\left(3x-32\right)}{\left(3x-16\right)^{2}}
Graph
Share
Copied to clipboard
\frac{2x}{\frac{4\times 4}{4x}-\frac{3x}{4x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and 4 is 4x. Multiply \frac{4}{x} times \frac{4}{4}. Multiply \frac{3}{4} times \frac{x}{x}.
\frac{2x}{\frac{4\times 4-3x}{4x}}
Since \frac{4\times 4}{4x} and \frac{3x}{4x} have the same denominator, subtract them by subtracting their numerators.
\frac{2x}{\frac{16-3x}{4x}}
Do the multiplications in 4\times 4-3x.
\frac{2x\times 4x}{16-3x}
Divide 2x by \frac{16-3x}{4x} by multiplying 2x by the reciprocal of \frac{16-3x}{4x}.
\frac{2x^{2}\times 4}{16-3x}
Multiply x and x to get x^{2}.
\frac{8x^{2}}{16-3x}
Multiply 2 and 4 to get 8.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x}{\frac{4\times 4}{4x}-\frac{3x}{4x}})
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and 4 is 4x. Multiply \frac{4}{x} times \frac{4}{4}. Multiply \frac{3}{4} times \frac{x}{x}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x}{\frac{4\times 4-3x}{4x}})
Since \frac{4\times 4}{4x} and \frac{3x}{4x} have the same denominator, subtract them by subtracting their numerators.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x}{\frac{16-3x}{4x}})
Do the multiplications in 4\times 4-3x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x\times 4x}{16-3x})
Divide 2x by \frac{16-3x}{4x} by multiplying 2x by the reciprocal of \frac{16-3x}{4x}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x^{2}\times 4}{16-3x})
Multiply x and x to get x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{8x^{2}}{16-3x})
Multiply 2 and 4 to get 8.
\frac{\left(-3x^{1}+16\right)\frac{\mathrm{d}}{\mathrm{d}x}(8x^{2})-8x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(-3x^{1}+16)}{\left(-3x^{1}+16\right)^{2}}
For any two differentiable functions, the derivative of the quotient of two functions is the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the denominator squared.
\frac{\left(-3x^{1}+16\right)\times 2\times 8x^{2-1}-8x^{2}\left(-3\right)x^{1-1}}{\left(-3x^{1}+16\right)^{2}}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{\left(-3x^{1}+16\right)\times 16x^{1}-8x^{2}\left(-3\right)x^{0}}{\left(-3x^{1}+16\right)^{2}}
Do the arithmetic.
\frac{-3x^{1}\times 16x^{1}+16\times 16x^{1}-8x^{2}\left(-3\right)x^{0}}{\left(-3x^{1}+16\right)^{2}}
Expand using distributive property.
\frac{-3\times 16x^{1+1}+16\times 16x^{1}-8\left(-3\right)x^{2}}{\left(-3x^{1}+16\right)^{2}}
To multiply powers of the same base, add their exponents.
\frac{-48x^{2}+256x^{1}-\left(-24x^{2}\right)}{\left(-3x^{1}+16\right)^{2}}
Do the arithmetic.
\frac{\left(-48-\left(-24\right)\right)x^{2}+256x^{1}}{\left(-3x^{1}+16\right)^{2}}
Combine like terms.
\frac{-24x^{2}+256x^{1}}{\left(-3x^{1}+16\right)^{2}}
Subtract -24 from -48.
\frac{8x\left(-3x^{1}+32x^{0}\right)}{\left(-3x^{1}+16\right)^{2}}
Factor out 8x.
\frac{8x\left(-3x+32x^{0}\right)}{\left(-3x+16\right)^{2}}
For any term t, t^{1}=t.
\frac{8x\left(-3x+32\times 1\right)}{\left(-3x+16\right)^{2}}
For any term t except 0, t^{0}=1.
\frac{8x\left(-3x+32\right)}{\left(-3x+16\right)^{2}}
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}