Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

factor(\frac{2x^{4}y}{16+3}\times \frac{5}{2}-\frac{2x\left(-2\right)}{-2^{2}+3}\times \frac{5}{2})
Calculate 4 to the power of 2 and get 16.
factor(\frac{2x^{4}y}{19}\times \frac{5}{2}-\frac{2x\left(-2\right)}{-2^{2}+3}\times \frac{5}{2})
Add 16 and 3 to get 19.
factor(\frac{2x^{4}y\times 5}{19\times 2}-\frac{2x\left(-2\right)}{-2^{2}+3}\times \frac{5}{2})
Multiply \frac{2x^{4}y}{19} times \frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
factor(\frac{5yx^{4}}{19}-\frac{2x\left(-2\right)}{-2^{2}+3}\times \frac{5}{2})
Cancel out 2 in both numerator and denominator.
factor(\frac{5yx^{4}}{19}-\frac{-4x}{-2^{2}+3}\times \frac{5}{2})
Multiply 2 and -2 to get -4.
factor(\frac{5yx^{4}}{19}-\frac{-4x}{-4+3}\times \frac{5}{2})
Calculate 2 to the power of 2 and get 4.
factor(\frac{5yx^{4}}{19}-\frac{-4x}{-1}\times \frac{5}{2})
Add -4 and 3 to get -1.
factor(\frac{5yx^{4}}{19}-4x\times \frac{5}{2})
Anything divided by -1 gives its opposite.
factor(\frac{5yx^{4}}{19}-10x)
Multiply 4 and \frac{5}{2} to get 10.
factor(\frac{5yx^{4}}{19}+\frac{19\left(-10\right)x}{19})
To add or subtract expressions, expand them to make their denominators the same. Multiply -10x times \frac{19}{19}.
factor(\frac{5yx^{4}+19\left(-10\right)x}{19})
Since \frac{5yx^{4}}{19} and \frac{19\left(-10\right)x}{19} have the same denominator, add them by adding their numerators.
factor(\frac{5yx^{4}-190x}{19})
Do the multiplications in 5yx^{4}+19\left(-10\right)x.
5\left(yx^{4}-38x\right)
Consider 5yx^{4}-190x. Factor out 5.
x\left(yx^{3}-38\right)
Consider yx^{4}-38x. Factor out x.
\frac{5x\left(yx^{3}-38\right)}{19}
Rewrite the complete factored expression. Simplify.