Evaluate
\frac{5x^{4}}{19}-10x
Factor
\frac{5x\left(x^{3}-38\right)}{19}
Graph
Share
Copied to clipboard
\frac{2x^{4}}{16+3}\times \frac{5}{2}-\frac{2x\left(-2\right)}{-2^{2}+3}\times \frac{5}{2}
Calculate 4 to the power of 2 and get 16.
\frac{2x^{4}}{19}\times \frac{5}{2}-\frac{2x\left(-2\right)}{-2^{2}+3}\times \frac{5}{2}
Add 16 and 3 to get 19.
\frac{2x^{4}\times 5}{19\times 2}-\frac{2x\left(-2\right)}{-2^{2}+3}\times \frac{5}{2}
Multiply \frac{2x^{4}}{19} times \frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{5x^{4}}{19}-\frac{2x\left(-2\right)}{-2^{2}+3}\times \frac{5}{2}
Cancel out 2 in both numerator and denominator.
\frac{5x^{4}}{19}-\frac{-4x}{-2^{2}+3}\times \frac{5}{2}
Multiply 2 and -2 to get -4.
\frac{5x^{4}}{19}-\frac{-4x}{-4+3}\times \frac{5}{2}
Calculate 2 to the power of 2 and get 4.
\frac{5x^{4}}{19}-\frac{-4x}{-1}\times \frac{5}{2}
Add -4 and 3 to get -1.
\frac{5x^{4}}{19}-4x\times \frac{5}{2}
Anything divided by -1 gives its opposite.
\frac{5x^{4}}{19}-10x
Multiply 4 and \frac{5}{2} to get 10.
\frac{5x^{4}}{19}+\frac{19\left(-10\right)x}{19}
To add or subtract expressions, expand them to make their denominators the same. Multiply -10x times \frac{19}{19}.
\frac{5x^{4}+19\left(-10\right)x}{19}
Since \frac{5x^{4}}{19} and \frac{19\left(-10\right)x}{19} have the same denominator, add them by adding their numerators.
\frac{5x^{4}-190x}{19}
Do the multiplications in 5x^{4}+19\left(-10\right)x.
factor(\frac{2x^{4}}{16+3}\times \frac{5}{2}-\frac{2x\left(-2\right)}{-2^{2}+3}\times \frac{5}{2})
Calculate 4 to the power of 2 and get 16.
factor(\frac{2x^{4}}{19}\times \frac{5}{2}-\frac{2x\left(-2\right)}{-2^{2}+3}\times \frac{5}{2})
Add 16 and 3 to get 19.
factor(\frac{2x^{4}\times 5}{19\times 2}-\frac{2x\left(-2\right)}{-2^{2}+3}\times \frac{5}{2})
Multiply \frac{2x^{4}}{19} times \frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
factor(\frac{5x^{4}}{19}-\frac{2x\left(-2\right)}{-2^{2}+3}\times \frac{5}{2})
Cancel out 2 in both numerator and denominator.
factor(\frac{5x^{4}}{19}-\frac{-4x}{-2^{2}+3}\times \frac{5}{2})
Multiply 2 and -2 to get -4.
factor(\frac{5x^{4}}{19}-\frac{-4x}{-4+3}\times \frac{5}{2})
Calculate 2 to the power of 2 and get 4.
factor(\frac{5x^{4}}{19}-\frac{-4x}{-1}\times \frac{5}{2})
Add -4 and 3 to get -1.
factor(\frac{5x^{4}}{19}-4x\times \frac{5}{2})
Anything divided by -1 gives its opposite.
factor(\frac{5x^{4}}{19}-10x)
Multiply 4 and \frac{5}{2} to get 10.
factor(\frac{5x^{4}}{19}+\frac{19\left(-10\right)x}{19})
To add or subtract expressions, expand them to make their denominators the same. Multiply -10x times \frac{19}{19}.
factor(\frac{5x^{4}+19\left(-10\right)x}{19})
Since \frac{5x^{4}}{19} and \frac{19\left(-10\right)x}{19} have the same denominator, add them by adding their numerators.
factor(\frac{5x^{4}-190x}{19})
Do the multiplications in 5x^{4}+19\left(-10\right)x.
5\left(x^{4}-38x\right)
Consider 5x^{4}-190x. Factor out 5.
x\left(x^{3}-38\right)
Consider x^{4}-38x. Factor out x.
\frac{5x\left(x^{3}-38\right)}{19}
Rewrite the complete factored expression. Simplify. Polynomial x^{3}-38 is not factored since it does not have any rational roots.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}