Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2x^{3}-4x^{2}-15x+5}{\left(x^{2}-2x-8\right)x^{2}}+\frac{1}{9}
Express \frac{\frac{2x^{3}-4x^{2}-15x+5}{x^{2}-2x-8}}{x^{2}} as a single fraction.
\frac{2x^{3}-4x^{2}-15x+5}{\left(x-4\right)\left(x+2\right)x^{2}}+\frac{1}{9}
Factor \left(x^{2}-2x-8\right)x^{2}.
\frac{9\left(2x^{3}-4x^{2}-15x+5\right)}{9\left(x-4\right)\left(x+2\right)x^{2}}+\frac{\left(x-4\right)\left(x+2\right)x^{2}}{9\left(x-4\right)\left(x+2\right)x^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-4\right)\left(x+2\right)x^{2} and 9 is 9\left(x-4\right)\left(x+2\right)x^{2}. Multiply \frac{2x^{3}-4x^{2}-15x+5}{\left(x-4\right)\left(x+2\right)x^{2}} times \frac{9}{9}. Multiply \frac{1}{9} times \frac{\left(x-4\right)\left(x+2\right)x^{2}}{\left(x-4\right)\left(x+2\right)x^{2}}.
\frac{9\left(2x^{3}-4x^{2}-15x+5\right)+\left(x-4\right)\left(x+2\right)x^{2}}{9\left(x-4\right)\left(x+2\right)x^{2}}
Since \frac{9\left(2x^{3}-4x^{2}-15x+5\right)}{9\left(x-4\right)\left(x+2\right)x^{2}} and \frac{\left(x-4\right)\left(x+2\right)x^{2}}{9\left(x-4\right)\left(x+2\right)x^{2}} have the same denominator, add them by adding their numerators.
\frac{18x^{3}-36x^{2}-135x+45+x^{4}+2x^{3}-4x^{3}-8x^{2}}{9\left(x-4\right)\left(x+2\right)x^{2}}
Do the multiplications in 9\left(2x^{3}-4x^{2}-15x+5\right)+\left(x-4\right)\left(x+2\right)x^{2}.
\frac{16x^{3}-44x^{2}-135x+45+x^{4}}{9\left(x-4\right)\left(x+2\right)x^{2}}
Combine like terms in 18x^{3}-36x^{2}-135x+45+x^{4}+2x^{3}-4x^{3}-8x^{2}.
\frac{16x^{3}-44x^{2}-135x+45+x^{4}}{9x^{4}-18x^{3}-72x^{2}}
Expand 9\left(x-4\right)\left(x+2\right)x^{2}.
\frac{2x^{3}-4x^{2}-15x+5}{\left(x^{2}-2x-8\right)x^{2}}+\frac{1}{9}
Express \frac{\frac{2x^{3}-4x^{2}-15x+5}{x^{2}-2x-8}}{x^{2}} as a single fraction.
\frac{2x^{3}-4x^{2}-15x+5}{\left(x-4\right)\left(x+2\right)x^{2}}+\frac{1}{9}
Factor \left(x^{2}-2x-8\right)x^{2}.
\frac{9\left(2x^{3}-4x^{2}-15x+5\right)}{9\left(x-4\right)\left(x+2\right)x^{2}}+\frac{\left(x-4\right)\left(x+2\right)x^{2}}{9\left(x-4\right)\left(x+2\right)x^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-4\right)\left(x+2\right)x^{2} and 9 is 9\left(x-4\right)\left(x+2\right)x^{2}. Multiply \frac{2x^{3}-4x^{2}-15x+5}{\left(x-4\right)\left(x+2\right)x^{2}} times \frac{9}{9}. Multiply \frac{1}{9} times \frac{\left(x-4\right)\left(x+2\right)x^{2}}{\left(x-4\right)\left(x+2\right)x^{2}}.
\frac{9\left(2x^{3}-4x^{2}-15x+5\right)+\left(x-4\right)\left(x+2\right)x^{2}}{9\left(x-4\right)\left(x+2\right)x^{2}}
Since \frac{9\left(2x^{3}-4x^{2}-15x+5\right)}{9\left(x-4\right)\left(x+2\right)x^{2}} and \frac{\left(x-4\right)\left(x+2\right)x^{2}}{9\left(x-4\right)\left(x+2\right)x^{2}} have the same denominator, add them by adding their numerators.
\frac{18x^{3}-36x^{2}-135x+45+x^{4}+2x^{3}-4x^{3}-8x^{2}}{9\left(x-4\right)\left(x+2\right)x^{2}}
Do the multiplications in 9\left(2x^{3}-4x^{2}-15x+5\right)+\left(x-4\right)\left(x+2\right)x^{2}.
\frac{16x^{3}-44x^{2}-135x+45+x^{4}}{9\left(x-4\right)\left(x+2\right)x^{2}}
Combine like terms in 18x^{3}-36x^{2}-135x+45+x^{4}+2x^{3}-4x^{3}-8x^{2}.
\frac{16x^{3}-44x^{2}-135x+45+x^{4}}{9x^{4}-18x^{3}-72x^{2}}
Expand 9\left(x-4\right)\left(x+2\right)x^{2}.