Evaluate
\frac{\left(y+11\right)\left(3x+1\right)}{\left(y-1\right)\left(2x-3\right)}
Expand
\frac{3xy+33x+y+11}{\left(y-1\right)\left(2x-3\right)}
Share
Copied to clipboard
\frac{\frac{\left(2x^{2}-x-1\right)\left(y^{2}+9y-22\right)}{\left(y^{2}-3y+2\right)\left(2x^{2}-x-1\right)}}{\frac{4x^{2}-4x-3}{6x^{2}+5x+1}}
Multiply \frac{2x^{2}-x-1}{y^{2}-3y+2} times \frac{y^{2}+9y-22}{2x^{2}-x-1} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{y^{2}+9y-22}{y^{2}-3y+2}}{\frac{4x^{2}-4x-3}{6x^{2}+5x+1}}
Cancel out 2x^{2}-x-1 in both numerator and denominator.
\frac{\frac{y^{2}+9y-22}{y^{2}-3y+2}}{\frac{\left(2x-3\right)\left(2x+1\right)}{\left(2x+1\right)\left(3x+1\right)}}
Factor the expressions that are not already factored in \frac{4x^{2}-4x-3}{6x^{2}+5x+1}.
\frac{\frac{y^{2}+9y-22}{y^{2}-3y+2}}{\frac{2x-3}{3x+1}}
Cancel out 2x+1 in both numerator and denominator.
\frac{\left(y^{2}+9y-22\right)\left(3x+1\right)}{\left(y^{2}-3y+2\right)\left(2x-3\right)}
Divide \frac{y^{2}+9y-22}{y^{2}-3y+2} by \frac{2x-3}{3x+1} by multiplying \frac{y^{2}+9y-22}{y^{2}-3y+2} by the reciprocal of \frac{2x-3}{3x+1}.
\frac{\left(y-2\right)\left(y+11\right)\left(3x+1\right)}{\left(y-2\right)\left(y-1\right)\left(2x-3\right)}
Factor the expressions that are not already factored.
\frac{\left(y+11\right)\left(3x+1\right)}{\left(y-1\right)\left(2x-3\right)}
Cancel out y-2 in both numerator and denominator.
\frac{3xy+33x+y+11}{2xy-2x-3y+3}
Expand the expression.
\frac{\frac{\left(2x^{2}-x-1\right)\left(y^{2}+9y-22\right)}{\left(y^{2}-3y+2\right)\left(2x^{2}-x-1\right)}}{\frac{4x^{2}-4x-3}{6x^{2}+5x+1}}
Multiply \frac{2x^{2}-x-1}{y^{2}-3y+2} times \frac{y^{2}+9y-22}{2x^{2}-x-1} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{y^{2}+9y-22}{y^{2}-3y+2}}{\frac{4x^{2}-4x-3}{6x^{2}+5x+1}}
Cancel out 2x^{2}-x-1 in both numerator and denominator.
\frac{\frac{y^{2}+9y-22}{y^{2}-3y+2}}{\frac{\left(2x-3\right)\left(2x+1\right)}{\left(2x+1\right)\left(3x+1\right)}}
Factor the expressions that are not already factored in \frac{4x^{2}-4x-3}{6x^{2}+5x+1}.
\frac{\frac{y^{2}+9y-22}{y^{2}-3y+2}}{\frac{2x-3}{3x+1}}
Cancel out 2x+1 in both numerator and denominator.
\frac{\left(y^{2}+9y-22\right)\left(3x+1\right)}{\left(y^{2}-3y+2\right)\left(2x-3\right)}
Divide \frac{y^{2}+9y-22}{y^{2}-3y+2} by \frac{2x-3}{3x+1} by multiplying \frac{y^{2}+9y-22}{y^{2}-3y+2} by the reciprocal of \frac{2x-3}{3x+1}.
\frac{\left(y-2\right)\left(y+11\right)\left(3x+1\right)}{\left(y-2\right)\left(y-1\right)\left(2x-3\right)}
Factor the expressions that are not already factored.
\frac{\left(y+11\right)\left(3x+1\right)}{\left(y-1\right)\left(2x-3\right)}
Cancel out y-2 in both numerator and denominator.
\frac{3xy+33x+y+11}{2xy-2x-3y+3}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}