Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{\left(2x^{2}-x-1\right)\left(y^{2}+9y-22\right)}{\left(y^{2}-3y+2\right)\left(2x^{2}-x-1\right)}}{\frac{4x^{2}-4x-3}{6x^{2}+5x+1}}
Multiply \frac{2x^{2}-x-1}{y^{2}-3y+2} times \frac{y^{2}+9y-22}{2x^{2}-x-1} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{y^{2}+9y-22}{y^{2}-3y+2}}{\frac{4x^{2}-4x-3}{6x^{2}+5x+1}}
Cancel out 2x^{2}-x-1 in both numerator and denominator.
\frac{\frac{y^{2}+9y-22}{y^{2}-3y+2}}{\frac{\left(2x-3\right)\left(2x+1\right)}{\left(2x+1\right)\left(3x+1\right)}}
Factor the expressions that are not already factored in \frac{4x^{2}-4x-3}{6x^{2}+5x+1}.
\frac{\frac{y^{2}+9y-22}{y^{2}-3y+2}}{\frac{2x-3}{3x+1}}
Cancel out 2x+1 in both numerator and denominator.
\frac{\left(y^{2}+9y-22\right)\left(3x+1\right)}{\left(y^{2}-3y+2\right)\left(2x-3\right)}
Divide \frac{y^{2}+9y-22}{y^{2}-3y+2} by \frac{2x-3}{3x+1} by multiplying \frac{y^{2}+9y-22}{y^{2}-3y+2} by the reciprocal of \frac{2x-3}{3x+1}.
\frac{\left(y-2\right)\left(y+11\right)\left(3x+1\right)}{\left(y-2\right)\left(y-1\right)\left(2x-3\right)}
Factor the expressions that are not already factored.
\frac{\left(y+11\right)\left(3x+1\right)}{\left(y-1\right)\left(2x-3\right)}
Cancel out y-2 in both numerator and denominator.
\frac{3xy+33x+y+11}{2xy-2x-3y+3}
Expand the expression.
\frac{\frac{\left(2x^{2}-x-1\right)\left(y^{2}+9y-22\right)}{\left(y^{2}-3y+2\right)\left(2x^{2}-x-1\right)}}{\frac{4x^{2}-4x-3}{6x^{2}+5x+1}}
Multiply \frac{2x^{2}-x-1}{y^{2}-3y+2} times \frac{y^{2}+9y-22}{2x^{2}-x-1} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{y^{2}+9y-22}{y^{2}-3y+2}}{\frac{4x^{2}-4x-3}{6x^{2}+5x+1}}
Cancel out 2x^{2}-x-1 in both numerator and denominator.
\frac{\frac{y^{2}+9y-22}{y^{2}-3y+2}}{\frac{\left(2x-3\right)\left(2x+1\right)}{\left(2x+1\right)\left(3x+1\right)}}
Factor the expressions that are not already factored in \frac{4x^{2}-4x-3}{6x^{2}+5x+1}.
\frac{\frac{y^{2}+9y-22}{y^{2}-3y+2}}{\frac{2x-3}{3x+1}}
Cancel out 2x+1 in both numerator and denominator.
\frac{\left(y^{2}+9y-22\right)\left(3x+1\right)}{\left(y^{2}-3y+2\right)\left(2x-3\right)}
Divide \frac{y^{2}+9y-22}{y^{2}-3y+2} by \frac{2x-3}{3x+1} by multiplying \frac{y^{2}+9y-22}{y^{2}-3y+2} by the reciprocal of \frac{2x-3}{3x+1}.
\frac{\left(y-2\right)\left(y+11\right)\left(3x+1\right)}{\left(y-2\right)\left(y-1\right)\left(2x-3\right)}
Factor the expressions that are not already factored.
\frac{\left(y+11\right)\left(3x+1\right)}{\left(y-1\right)\left(2x-3\right)}
Cancel out y-2 in both numerator and denominator.
\frac{3xy+33x+y+11}{2xy-2x-3y+3}
Expand the expression.