Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2x^{2}-x}{\left(x-6\right)\left(x+5\right)}-\frac{2}{x+5}+\frac{x}{6-x}
Factor x^{2}-x-30.
\frac{2x^{2}-x}{\left(x-6\right)\left(x+5\right)}-\frac{2\left(x-6\right)}{\left(x-6\right)\left(x+5\right)}+\frac{x}{6-x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-6\right)\left(x+5\right) and x+5 is \left(x-6\right)\left(x+5\right). Multiply \frac{2}{x+5} times \frac{x-6}{x-6}.
\frac{2x^{2}-x-2\left(x-6\right)}{\left(x-6\right)\left(x+5\right)}+\frac{x}{6-x}
Since \frac{2x^{2}-x}{\left(x-6\right)\left(x+5\right)} and \frac{2\left(x-6\right)}{\left(x-6\right)\left(x+5\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{2}-x-2x+12}{\left(x-6\right)\left(x+5\right)}+\frac{x}{6-x}
Do the multiplications in 2x^{2}-x-2\left(x-6\right).
\frac{2x^{2}-3x+12}{\left(x-6\right)\left(x+5\right)}+\frac{x}{6-x}
Combine like terms in 2x^{2}-x-2x+12.
\frac{2x^{2}-3x+12}{\left(x-6\right)\left(x+5\right)}+\frac{x\left(-1\right)\left(x+5\right)}{\left(x-6\right)\left(x+5\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-6\right)\left(x+5\right) and 6-x is \left(x-6\right)\left(x+5\right). Multiply \frac{x}{6-x} times \frac{-\left(x+5\right)}{-\left(x+5\right)}.
\frac{2x^{2}-3x+12+x\left(-1\right)\left(x+5\right)}{\left(x-6\right)\left(x+5\right)}
Since \frac{2x^{2}-3x+12}{\left(x-6\right)\left(x+5\right)} and \frac{x\left(-1\right)\left(x+5\right)}{\left(x-6\right)\left(x+5\right)} have the same denominator, add them by adding their numerators.
\frac{2x^{2}-3x+12-x^{2}-5x}{\left(x-6\right)\left(x+5\right)}
Do the multiplications in 2x^{2}-3x+12+x\left(-1\right)\left(x+5\right).
\frac{x^{2}-8x+12}{\left(x-6\right)\left(x+5\right)}
Combine like terms in 2x^{2}-3x+12-x^{2}-5x.
\frac{\left(x-6\right)\left(x-2\right)}{\left(x-6\right)\left(x+5\right)}
Factor the expressions that are not already factored in \frac{x^{2}-8x+12}{\left(x-6\right)\left(x+5\right)}.
\frac{x-2}{x+5}
Cancel out x-6 in both numerator and denominator.
\frac{2x^{2}-x}{\left(x-6\right)\left(x+5\right)}-\frac{2}{x+5}+\frac{x}{6-x}
Factor x^{2}-x-30.
\frac{2x^{2}-x}{\left(x-6\right)\left(x+5\right)}-\frac{2\left(x-6\right)}{\left(x-6\right)\left(x+5\right)}+\frac{x}{6-x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-6\right)\left(x+5\right) and x+5 is \left(x-6\right)\left(x+5\right). Multiply \frac{2}{x+5} times \frac{x-6}{x-6}.
\frac{2x^{2}-x-2\left(x-6\right)}{\left(x-6\right)\left(x+5\right)}+\frac{x}{6-x}
Since \frac{2x^{2}-x}{\left(x-6\right)\left(x+5\right)} and \frac{2\left(x-6\right)}{\left(x-6\right)\left(x+5\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{2}-x-2x+12}{\left(x-6\right)\left(x+5\right)}+\frac{x}{6-x}
Do the multiplications in 2x^{2}-x-2\left(x-6\right).
\frac{2x^{2}-3x+12}{\left(x-6\right)\left(x+5\right)}+\frac{x}{6-x}
Combine like terms in 2x^{2}-x-2x+12.
\frac{2x^{2}-3x+12}{\left(x-6\right)\left(x+5\right)}+\frac{x\left(-1\right)\left(x+5\right)}{\left(x-6\right)\left(x+5\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-6\right)\left(x+5\right) and 6-x is \left(x-6\right)\left(x+5\right). Multiply \frac{x}{6-x} times \frac{-\left(x+5\right)}{-\left(x+5\right)}.
\frac{2x^{2}-3x+12+x\left(-1\right)\left(x+5\right)}{\left(x-6\right)\left(x+5\right)}
Since \frac{2x^{2}-3x+12}{\left(x-6\right)\left(x+5\right)} and \frac{x\left(-1\right)\left(x+5\right)}{\left(x-6\right)\left(x+5\right)} have the same denominator, add them by adding their numerators.
\frac{2x^{2}-3x+12-x^{2}-5x}{\left(x-6\right)\left(x+5\right)}
Do the multiplications in 2x^{2}-3x+12+x\left(-1\right)\left(x+5\right).
\frac{x^{2}-8x+12}{\left(x-6\right)\left(x+5\right)}
Combine like terms in 2x^{2}-3x+12-x^{2}-5x.
\frac{\left(x-6\right)\left(x-2\right)}{\left(x-6\right)\left(x+5\right)}
Factor the expressions that are not already factored in \frac{x^{2}-8x+12}{\left(x-6\right)\left(x+5\right)}.
\frac{x-2}{x+5}
Cancel out x-6 in both numerator and denominator.