Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Share

\frac{\left(2x^{2}-9x-18\right)\left(x^{2}-16\right)}{\left(4x^{2}-24x\right)\left(2x^{3}+3x^{2}\right)}\times \frac{1}{x+4}
Divide \frac{2x^{2}-9x-18}{4x^{2}-24x} by \frac{2x^{3}+3x^{2}}{x^{2}-16} by multiplying \frac{2x^{2}-9x-18}{4x^{2}-24x} by the reciprocal of \frac{2x^{3}+3x^{2}}{x^{2}-16}.
\frac{\left(x-6\right)\left(x-4\right)\left(x+4\right)\left(2x+3\right)}{4x\left(x-6\right)\left(2x+3\right)x^{2}}\times \frac{1}{x+4}
Factor the expressions that are not already factored in \frac{\left(2x^{2}-9x-18\right)\left(x^{2}-16\right)}{\left(4x^{2}-24x\right)\left(2x^{3}+3x^{2}\right)}.
\frac{\left(x-4\right)\left(x+4\right)}{4xx^{2}}\times \frac{1}{x+4}
Cancel out \left(x-6\right)\left(2x+3\right) in both numerator and denominator.
\frac{\left(x-4\right)\left(x+4\right)}{4x^{3}}\times \frac{1}{x+4}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{\left(x-4\right)\left(x+4\right)}{4x^{3}\left(x+4\right)}
Multiply \frac{\left(x-4\right)\left(x+4\right)}{4x^{3}} times \frac{1}{x+4} by multiplying numerator times numerator and denominator times denominator.
\frac{x-4}{4x^{3}}
Cancel out x+4 in both numerator and denominator.
\frac{\left(2x^{2}-9x-18\right)\left(x^{2}-16\right)}{\left(4x^{2}-24x\right)\left(2x^{3}+3x^{2}\right)}\times \frac{1}{x+4}
Divide \frac{2x^{2}-9x-18}{4x^{2}-24x} by \frac{2x^{3}+3x^{2}}{x^{2}-16} by multiplying \frac{2x^{2}-9x-18}{4x^{2}-24x} by the reciprocal of \frac{2x^{3}+3x^{2}}{x^{2}-16}.
\frac{\left(x-6\right)\left(x-4\right)\left(x+4\right)\left(2x+3\right)}{4x\left(x-6\right)\left(2x+3\right)x^{2}}\times \frac{1}{x+4}
Factor the expressions that are not already factored in \frac{\left(2x^{2}-9x-18\right)\left(x^{2}-16\right)}{\left(4x^{2}-24x\right)\left(2x^{3}+3x^{2}\right)}.
\frac{\left(x-4\right)\left(x+4\right)}{4xx^{2}}\times \frac{1}{x+4}
Cancel out \left(x-6\right)\left(2x+3\right) in both numerator and denominator.
\frac{\left(x-4\right)\left(x+4\right)}{4x^{3}}\times \frac{1}{x+4}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{\left(x-4\right)\left(x+4\right)}{4x^{3}\left(x+4\right)}
Multiply \frac{\left(x-4\right)\left(x+4\right)}{4x^{3}} times \frac{1}{x+4} by multiplying numerator times numerator and denominator times denominator.
\frac{x-4}{4x^{3}}
Cancel out x+4 in both numerator and denominator.