Evaluate
\frac{\left(x-6\right)\left(x^{2}+16\right)}{4\left(x+1\right)x^{4}}
Expand
\frac{x^{3}-6x^{2}+16x-96}{4\left(x+1\right)x^{4}}
Graph
Share
Copied to clipboard
\frac{\left(2x^{2}-9x-18\right)\left(x^{2}+16\right)}{4x^{2}\left(2x^{3}+3x^{2}\right)}\times \frac{1}{x+1}
Divide \frac{2x^{2}-9x-18}{4x^{2}} by \frac{2x^{3}+3x^{2}}{x^{2}+16} by multiplying \frac{2x^{2}-9x-18}{4x^{2}} by the reciprocal of \frac{2x^{3}+3x^{2}}{x^{2}+16}.
\frac{\left(x-6\right)\left(2x+3\right)\left(x^{2}+16\right)}{4\left(2x+3\right)\left(x^{2}\right)^{2}}\times \frac{1}{x+1}
Factor the expressions that are not already factored in \frac{\left(2x^{2}-9x-18\right)\left(x^{2}+16\right)}{4x^{2}\left(2x^{3}+3x^{2}\right)}.
\frac{\left(x-6\right)\left(x^{2}+16\right)}{4\left(x^{2}\right)^{2}}\times \frac{1}{x+1}
Cancel out 2x+3 in both numerator and denominator.
\frac{\left(x-6\right)\left(x^{2}+16\right)}{4x^{4}}\times \frac{1}{x+1}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\left(x-6\right)\left(x^{2}+16\right)}{4x^{4}\left(x+1\right)}
Multiply \frac{\left(x-6\right)\left(x^{2}+16\right)}{4x^{4}} times \frac{1}{x+1} by multiplying numerator times numerator and denominator times denominator.
\frac{x^{3}+16x-6x^{2}-96}{4x^{4}\left(x+1\right)}
Use the distributive property to multiply x-6 by x^{2}+16.
\frac{x^{3}+16x-6x^{2}-96}{4x^{5}+4x^{4}}
Use the distributive property to multiply 4x^{4} by x+1.
\frac{\left(2x^{2}-9x-18\right)\left(x^{2}+16\right)}{4x^{2}\left(2x^{3}+3x^{2}\right)}\times \frac{1}{x+1}
Divide \frac{2x^{2}-9x-18}{4x^{2}} by \frac{2x^{3}+3x^{2}}{x^{2}+16} by multiplying \frac{2x^{2}-9x-18}{4x^{2}} by the reciprocal of \frac{2x^{3}+3x^{2}}{x^{2}+16}.
\frac{\left(x-6\right)\left(2x+3\right)\left(x^{2}+16\right)}{4\left(2x+3\right)\left(x^{2}\right)^{2}}\times \frac{1}{x+1}
Factor the expressions that are not already factored in \frac{\left(2x^{2}-9x-18\right)\left(x^{2}+16\right)}{4x^{2}\left(2x^{3}+3x^{2}\right)}.
\frac{\left(x-6\right)\left(x^{2}+16\right)}{4\left(x^{2}\right)^{2}}\times \frac{1}{x+1}
Cancel out 2x+3 in both numerator and denominator.
\frac{\left(x-6\right)\left(x^{2}+16\right)}{4x^{4}}\times \frac{1}{x+1}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\left(x-6\right)\left(x^{2}+16\right)}{4x^{4}\left(x+1\right)}
Multiply \frac{\left(x-6\right)\left(x^{2}+16\right)}{4x^{4}} times \frac{1}{x+1} by multiplying numerator times numerator and denominator times denominator.
\frac{x^{3}+16x-6x^{2}-96}{4x^{4}\left(x+1\right)}
Use the distributive property to multiply x-6 by x^{2}+16.
\frac{x^{3}+16x-6x^{2}-96}{4x^{5}+4x^{4}}
Use the distributive property to multiply 4x^{4} by x+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}