Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Share

\frac{\left(2x^{2}-9x-18\right)\left(x^{2}+16\right)}{4x^{2}\left(2x^{3}+3x^{2}\right)}\times \frac{1}{x+1}
Divide \frac{2x^{2}-9x-18}{4x^{2}} by \frac{2x^{3}+3x^{2}}{x^{2}+16} by multiplying \frac{2x^{2}-9x-18}{4x^{2}} by the reciprocal of \frac{2x^{3}+3x^{2}}{x^{2}+16}.
\frac{\left(x-6\right)\left(2x+3\right)\left(x^{2}+16\right)}{4\left(2x+3\right)\left(x^{2}\right)^{2}}\times \frac{1}{x+1}
Factor the expressions that are not already factored in \frac{\left(2x^{2}-9x-18\right)\left(x^{2}+16\right)}{4x^{2}\left(2x^{3}+3x^{2}\right)}.
\frac{\left(x-6\right)\left(x^{2}+16\right)}{4\left(x^{2}\right)^{2}}\times \frac{1}{x+1}
Cancel out 2x+3 in both numerator and denominator.
\frac{\left(x-6\right)\left(x^{2}+16\right)}{4x^{4}}\times \frac{1}{x+1}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\left(x-6\right)\left(x^{2}+16\right)}{4x^{4}\left(x+1\right)}
Multiply \frac{\left(x-6\right)\left(x^{2}+16\right)}{4x^{4}} times \frac{1}{x+1} by multiplying numerator times numerator and denominator times denominator.
\frac{x^{3}+16x-6x^{2}-96}{4x^{4}\left(x+1\right)}
Use the distributive property to multiply x-6 by x^{2}+16.
\frac{x^{3}+16x-6x^{2}-96}{4x^{5}+4x^{4}}
Use the distributive property to multiply 4x^{4} by x+1.
\frac{\left(2x^{2}-9x-18\right)\left(x^{2}+16\right)}{4x^{2}\left(2x^{3}+3x^{2}\right)}\times \frac{1}{x+1}
Divide \frac{2x^{2}-9x-18}{4x^{2}} by \frac{2x^{3}+3x^{2}}{x^{2}+16} by multiplying \frac{2x^{2}-9x-18}{4x^{2}} by the reciprocal of \frac{2x^{3}+3x^{2}}{x^{2}+16}.
\frac{\left(x-6\right)\left(2x+3\right)\left(x^{2}+16\right)}{4\left(2x+3\right)\left(x^{2}\right)^{2}}\times \frac{1}{x+1}
Factor the expressions that are not already factored in \frac{\left(2x^{2}-9x-18\right)\left(x^{2}+16\right)}{4x^{2}\left(2x^{3}+3x^{2}\right)}.
\frac{\left(x-6\right)\left(x^{2}+16\right)}{4\left(x^{2}\right)^{2}}\times \frac{1}{x+1}
Cancel out 2x+3 in both numerator and denominator.
\frac{\left(x-6\right)\left(x^{2}+16\right)}{4x^{4}}\times \frac{1}{x+1}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\left(x-6\right)\left(x^{2}+16\right)}{4x^{4}\left(x+1\right)}
Multiply \frac{\left(x-6\right)\left(x^{2}+16\right)}{4x^{4}} times \frac{1}{x+1} by multiplying numerator times numerator and denominator times denominator.
\frac{x^{3}+16x-6x^{2}-96}{4x^{4}\left(x+1\right)}
Use the distributive property to multiply x-6 by x^{2}+16.
\frac{x^{3}+16x-6x^{2}-96}{4x^{5}+4x^{4}}
Use the distributive property to multiply 4x^{4} by x+1.