Solve for x
x = \frac{\sqrt{1361} + 39}{4} \approx 18.972933373
x=\frac{39-\sqrt{1361}}{4}\approx 0.527066627
Graph
Share
Copied to clipboard
2x^{2}-6=13\left(3x-2\right)
Variable x cannot be equal to \frac{2}{3} since division by zero is not defined. Multiply both sides of the equation by 3x-2.
2x^{2}-6=39x-26
Use the distributive property to multiply 13 by 3x-2.
2x^{2}-6-39x=-26
Subtract 39x from both sides.
2x^{2}-6-39x+26=0
Add 26 to both sides.
2x^{2}+20-39x=0
Add -6 and 26 to get 20.
2x^{2}-39x+20=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-39\right)±\sqrt{\left(-39\right)^{2}-4\times 2\times 20}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -39 for b, and 20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-39\right)±\sqrt{1521-4\times 2\times 20}}{2\times 2}
Square -39.
x=\frac{-\left(-39\right)±\sqrt{1521-8\times 20}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-39\right)±\sqrt{1521-160}}{2\times 2}
Multiply -8 times 20.
x=\frac{-\left(-39\right)±\sqrt{1361}}{2\times 2}
Add 1521 to -160.
x=\frac{39±\sqrt{1361}}{2\times 2}
The opposite of -39 is 39.
x=\frac{39±\sqrt{1361}}{4}
Multiply 2 times 2.
x=\frac{\sqrt{1361}+39}{4}
Now solve the equation x=\frac{39±\sqrt{1361}}{4} when ± is plus. Add 39 to \sqrt{1361}.
x=\frac{39-\sqrt{1361}}{4}
Now solve the equation x=\frac{39±\sqrt{1361}}{4} when ± is minus. Subtract \sqrt{1361} from 39.
x=\frac{\sqrt{1361}+39}{4} x=\frac{39-\sqrt{1361}}{4}
The equation is now solved.
2x^{2}-6=13\left(3x-2\right)
Variable x cannot be equal to \frac{2}{3} since division by zero is not defined. Multiply both sides of the equation by 3x-2.
2x^{2}-6=39x-26
Use the distributive property to multiply 13 by 3x-2.
2x^{2}-6-39x=-26
Subtract 39x from both sides.
2x^{2}-39x=-26+6
Add 6 to both sides.
2x^{2}-39x=-20
Add -26 and 6 to get -20.
\frac{2x^{2}-39x}{2}=-\frac{20}{2}
Divide both sides by 2.
x^{2}-\frac{39}{2}x=-\frac{20}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-\frac{39}{2}x=-10
Divide -20 by 2.
x^{2}-\frac{39}{2}x+\left(-\frac{39}{4}\right)^{2}=-10+\left(-\frac{39}{4}\right)^{2}
Divide -\frac{39}{2}, the coefficient of the x term, by 2 to get -\frac{39}{4}. Then add the square of -\frac{39}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{39}{2}x+\frac{1521}{16}=-10+\frac{1521}{16}
Square -\frac{39}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{39}{2}x+\frac{1521}{16}=\frac{1361}{16}
Add -10 to \frac{1521}{16}.
\left(x-\frac{39}{4}\right)^{2}=\frac{1361}{16}
Factor x^{2}-\frac{39}{2}x+\frac{1521}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{39}{4}\right)^{2}}=\sqrt{\frac{1361}{16}}
Take the square root of both sides of the equation.
x-\frac{39}{4}=\frac{\sqrt{1361}}{4} x-\frac{39}{4}=-\frac{\sqrt{1361}}{4}
Simplify.
x=\frac{\sqrt{1361}+39}{4} x=\frac{39-\sqrt{1361}}{4}
Add \frac{39}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}