Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2x^{2}-5x+19-\left(x^{2}+9x-26\right)}{x^{2}+4x-45}
Since \frac{2x^{2}-5x+19}{x^{2}+4x-45} and \frac{x^{2}+9x-26}{x^{2}+4x-45} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{2}-5x+19-x^{2}-9x+26}{x^{2}+4x-45}
Do the multiplications in 2x^{2}-5x+19-\left(x^{2}+9x-26\right).
\frac{x^{2}-14x+45}{x^{2}+4x-45}
Combine like terms in 2x^{2}-5x+19-x^{2}-9x+26.
\frac{\left(x-9\right)\left(x-5\right)}{\left(x-5\right)\left(x+9\right)}
Factor the expressions that are not already factored in \frac{x^{2}-14x+45}{x^{2}+4x-45}.
\frac{x-9}{x+9}
Cancel out x-5 in both numerator and denominator.
\frac{2x^{2}-5x+19-\left(x^{2}+9x-26\right)}{x^{2}+4x-45}
Since \frac{2x^{2}-5x+19}{x^{2}+4x-45} and \frac{x^{2}+9x-26}{x^{2}+4x-45} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{2}-5x+19-x^{2}-9x+26}{x^{2}+4x-45}
Do the multiplications in 2x^{2}-5x+19-\left(x^{2}+9x-26\right).
\frac{x^{2}-14x+45}{x^{2}+4x-45}
Combine like terms in 2x^{2}-5x+19-x^{2}-9x+26.
\frac{\left(x-9\right)\left(x-5\right)}{\left(x-5\right)\left(x+9\right)}
Factor the expressions that are not already factored in \frac{x^{2}-14x+45}{x^{2}+4x-45}.
\frac{x-9}{x+9}
Cancel out x-5 in both numerator and denominator.