Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2x^{2}-2}{x^{2}-2x-8}+\frac{\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(x+4\right)}
Factor the expressions that are not already factored in \frac{x^{2}-1}{x^{2}+5x+4}.
\frac{2x^{2}-2}{x^{2}-2x-8}+\frac{x-1}{x+4}
Cancel out x+1 in both numerator and denominator.
\frac{2x^{2}-2}{\left(x-4\right)\left(x+2\right)}+\frac{x-1}{x+4}
Factor x^{2}-2x-8.
\frac{\left(2x^{2}-2\right)\left(x+4\right)}{\left(x-4\right)\left(x+2\right)\left(x+4\right)}+\frac{\left(x-1\right)\left(x-4\right)\left(x+2\right)}{\left(x-4\right)\left(x+2\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-4\right)\left(x+2\right) and x+4 is \left(x-4\right)\left(x+2\right)\left(x+4\right). Multiply \frac{2x^{2}-2}{\left(x-4\right)\left(x+2\right)} times \frac{x+4}{x+4}. Multiply \frac{x-1}{x+4} times \frac{\left(x-4\right)\left(x+2\right)}{\left(x-4\right)\left(x+2\right)}.
\frac{\left(2x^{2}-2\right)\left(x+4\right)+\left(x-1\right)\left(x-4\right)\left(x+2\right)}{\left(x-4\right)\left(x+2\right)\left(x+4\right)}
Since \frac{\left(2x^{2}-2\right)\left(x+4\right)}{\left(x-4\right)\left(x+2\right)\left(x+4\right)} and \frac{\left(x-1\right)\left(x-4\right)\left(x+2\right)}{\left(x-4\right)\left(x+2\right)\left(x+4\right)} have the same denominator, add them by adding their numerators.
\frac{2x^{3}+8x^{2}-2x-8+x^{3}-2x^{2}-8x-x^{2}+2x+8}{\left(x-4\right)\left(x+2\right)\left(x+4\right)}
Do the multiplications in \left(2x^{2}-2\right)\left(x+4\right)+\left(x-1\right)\left(x-4\right)\left(x+2\right).
\frac{3x^{3}+5x^{2}-8x}{\left(x-4\right)\left(x+2\right)\left(x+4\right)}
Combine like terms in 2x^{3}+8x^{2}-2x-8+x^{3}-2x^{2}-8x-x^{2}+2x+8.
\frac{3x^{3}+5x^{2}-8x}{x^{3}+2x^{2}-16x-32}
Expand \left(x-4\right)\left(x+2\right)\left(x+4\right).
\frac{2x^{2}-2}{x^{2}-2x-8}+\frac{\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(x+4\right)}
Factor the expressions that are not already factored in \frac{x^{2}-1}{x^{2}+5x+4}.
\frac{2x^{2}-2}{x^{2}-2x-8}+\frac{x-1}{x+4}
Cancel out x+1 in both numerator and denominator.
\frac{2x^{2}-2}{\left(x-4\right)\left(x+2\right)}+\frac{x-1}{x+4}
Factor x^{2}-2x-8.
\frac{\left(2x^{2}-2\right)\left(x+4\right)}{\left(x-4\right)\left(x+2\right)\left(x+4\right)}+\frac{\left(x-1\right)\left(x-4\right)\left(x+2\right)}{\left(x-4\right)\left(x+2\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-4\right)\left(x+2\right) and x+4 is \left(x-4\right)\left(x+2\right)\left(x+4\right). Multiply \frac{2x^{2}-2}{\left(x-4\right)\left(x+2\right)} times \frac{x+4}{x+4}. Multiply \frac{x-1}{x+4} times \frac{\left(x-4\right)\left(x+2\right)}{\left(x-4\right)\left(x+2\right)}.
\frac{\left(2x^{2}-2\right)\left(x+4\right)+\left(x-1\right)\left(x-4\right)\left(x+2\right)}{\left(x-4\right)\left(x+2\right)\left(x+4\right)}
Since \frac{\left(2x^{2}-2\right)\left(x+4\right)}{\left(x-4\right)\left(x+2\right)\left(x+4\right)} and \frac{\left(x-1\right)\left(x-4\right)\left(x+2\right)}{\left(x-4\right)\left(x+2\right)\left(x+4\right)} have the same denominator, add them by adding their numerators.
\frac{2x^{3}+8x^{2}-2x-8+x^{3}-2x^{2}-8x-x^{2}+2x+8}{\left(x-4\right)\left(x+2\right)\left(x+4\right)}
Do the multiplications in \left(2x^{2}-2\right)\left(x+4\right)+\left(x-1\right)\left(x-4\right)\left(x+2\right).
\frac{3x^{3}+5x^{2}-8x}{\left(x-4\right)\left(x+2\right)\left(x+4\right)}
Combine like terms in 2x^{3}+8x^{2}-2x-8+x^{3}-2x^{2}-8x-x^{2}+2x+8.
\frac{3x^{3}+5x^{2}-8x}{x^{3}+2x^{2}-16x-32}
Expand \left(x-4\right)\left(x+2\right)\left(x+4\right).