Solve for b (complex solution)
\left\{\begin{matrix}b=-\frac{x^{2}-8xa^{2}+x-16a^{2}+a-4}{31x+65}\text{, }&x\neq -\frac{65}{31}\text{ and }x\neq -2\\b\in \mathrm{C}\text{, }&\left(x=-\frac{\sqrt{\frac{122479\sqrt{5786305}}{321408}+\frac{10280872273}{9963648}}}{2}+\frac{\sqrt{5786305}}{288}+\frac{103759}{8928}\text{ and }a=-\frac{\sqrt{5786305}}{1488}-\frac{31}{48}\right)\text{ or }\left(x=-\frac{\sqrt{-\frac{122479\sqrt{5786305}}{321408}+\frac{10280872273}{9963648}}}{2}-\frac{\sqrt{5786305}}{288}+\frac{103759}{8928}\text{ and }a=\frac{\sqrt{5786305}}{1488}-\frac{31}{48}\right)\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=-\frac{x^{2}-8xa^{2}+x-16a^{2}+a-4}{31x+65}\text{, }&x\neq -\frac{65}{31}\text{ and }x\neq -2\\b\in \mathrm{R}\text{, }&\left(a=-\frac{\sqrt{5786305}}{1488}-\frac{31}{48}\text{ and }x=-\frac{\sqrt{\frac{122479\sqrt{5786305}}{321408}+\frac{10280872273}{9963648}}}{2}+\frac{\sqrt{5786305}}{288}+\frac{103759}{8928}\right)\text{ or }\left(a=\frac{\sqrt{5786305}}{1488}-\frac{31}{48}\text{ and }x=-\frac{\sqrt{-\frac{122479\sqrt{5786305}}{321408}+\frac{10280872273}{9963648}}}{2}-\frac{\sqrt{5786305}}{288}+\frac{103759}{8928}\right)\end{matrix}\right.
Solve for a (complex solution)
a=-\frac{\sqrt{32x^{3}+992bx^{2}+96x^{2}+4064bx-64x+4160b-255}-1}{16\left(x+2\right)}
a=\frac{\sqrt{32x^{3}+992bx^{2}+96x^{2}+4064bx-64x+4160b-255}+1}{16\left(x+2\right)}\text{, }x\neq -2
Solve for a
a=-\frac{\sqrt{32x^{3}+992bx^{2}+96x^{2}+4064bx-64x+4160b-255}-1}{16\left(x+2\right)}
a=\frac{\sqrt{32x^{3}+992bx^{2}+96x^{2}+4064bx-64x+4160b-255}+1}{16\left(x+2\right)}\text{, }\left(x\geq -\frac{65}{31}\text{ or }b\geq -\frac{32x^{3}+96x^{2}-64x-255}{992x^{2}+4064x+4160}\right)\text{ and }\left(x>-2\text{ or }x\leq -\frac{65}{31}\text{ or }b\leq -\frac{32x^{3}+96x^{2}-64x-255}{992x^{2}+4064x+4160}\right)\text{ and }\left(x<-2\text{ or }b\geq -\frac{32x^{3}+96x^{2}-64x-255}{992x^{2}+4064x+4160}\right)\text{ and }x\neq -2
Graph
Share
Copied to clipboard
2x^{2}+5x+a+3b-x\left(x+2\right)+\left(x+2\right)\left(-2\right)=8a^{2}\left(x+2\right)-31b\left(x+2\right)
Multiply both sides of the equation by x+2.
2x^{2}+5x+a+3b-x^{2}-2x+\left(x+2\right)\left(-2\right)=8a^{2}\left(x+2\right)-31b\left(x+2\right)
Use the distributive property to multiply -x by x+2.
x^{2}+5x+a+3b-2x+\left(x+2\right)\left(-2\right)=8a^{2}\left(x+2\right)-31b\left(x+2\right)
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}+3x+a+3b+\left(x+2\right)\left(-2\right)=8a^{2}\left(x+2\right)-31b\left(x+2\right)
Combine 5x and -2x to get 3x.
x^{2}+3x+a+3b-2x-4=8a^{2}\left(x+2\right)-31b\left(x+2\right)
Use the distributive property to multiply x+2 by -2.
x^{2}+x+a+3b-4=8a^{2}\left(x+2\right)-31b\left(x+2\right)
Combine 3x and -2x to get x.
x^{2}+x+a+3b-4=8a^{2}x+16a^{2}-31b\left(x+2\right)
Use the distributive property to multiply 8a^{2} by x+2.
x^{2}+x+a+3b-4=8a^{2}x+16a^{2}-31bx-62b
Use the distributive property to multiply -31b by x+2.
x^{2}+x+a+3b-4+31bx=8a^{2}x+16a^{2}-62b
Add 31bx to both sides.
x^{2}+x+a+3b-4+31bx+62b=8a^{2}x+16a^{2}
Add 62b to both sides.
x^{2}+x+a+65b-4+31bx=8a^{2}x+16a^{2}
Combine 3b and 62b to get 65b.
x+a+65b-4+31bx=8a^{2}x+16a^{2}-x^{2}
Subtract x^{2} from both sides.
a+65b-4+31bx=8a^{2}x+16a^{2}-x^{2}-x
Subtract x from both sides.
65b-4+31bx=8a^{2}x+16a^{2}-x^{2}-x-a
Subtract a from both sides.
65b+31bx=8a^{2}x+16a^{2}-x^{2}-x-a+4
Add 4 to both sides.
\left(65+31x\right)b=8a^{2}x+16a^{2}-x^{2}-x-a+4
Combine all terms containing b.
\left(31x+65\right)b=4-a+16a^{2}-x+8xa^{2}-x^{2}
The equation is in standard form.
\frac{\left(31x+65\right)b}{31x+65}=\frac{4-a+16a^{2}-x+8xa^{2}-x^{2}}{31x+65}
Divide both sides by 65+31x.
b=\frac{4-a+16a^{2}-x+8xa^{2}-x^{2}}{31x+65}
Dividing by 65+31x undoes the multiplication by 65+31x.
2x^{2}+5x+a+3b-x\left(x+2\right)+\left(x+2\right)\left(-2\right)=8a^{2}\left(x+2\right)-31b\left(x+2\right)
Multiply both sides of the equation by x+2.
2x^{2}+5x+a+3b-x^{2}-2x+\left(x+2\right)\left(-2\right)=8a^{2}\left(x+2\right)-31b\left(x+2\right)
Use the distributive property to multiply -x by x+2.
x^{2}+5x+a+3b-2x+\left(x+2\right)\left(-2\right)=8a^{2}\left(x+2\right)-31b\left(x+2\right)
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}+3x+a+3b+\left(x+2\right)\left(-2\right)=8a^{2}\left(x+2\right)-31b\left(x+2\right)
Combine 5x and -2x to get 3x.
x^{2}+3x+a+3b-2x-4=8a^{2}\left(x+2\right)-31b\left(x+2\right)
Use the distributive property to multiply x+2 by -2.
x^{2}+x+a+3b-4=8a^{2}\left(x+2\right)-31b\left(x+2\right)
Combine 3x and -2x to get x.
x^{2}+x+a+3b-4=8a^{2}x+16a^{2}-31b\left(x+2\right)
Use the distributive property to multiply 8a^{2} by x+2.
x^{2}+x+a+3b-4=8a^{2}x+16a^{2}-31bx-62b
Use the distributive property to multiply -31b by x+2.
x^{2}+x+a+3b-4+31bx=8a^{2}x+16a^{2}-62b
Add 31bx to both sides.
x^{2}+x+a+3b-4+31bx+62b=8a^{2}x+16a^{2}
Add 62b to both sides.
x^{2}+x+a+65b-4+31bx=8a^{2}x+16a^{2}
Combine 3b and 62b to get 65b.
x+a+65b-4+31bx=8a^{2}x+16a^{2}-x^{2}
Subtract x^{2} from both sides.
a+65b-4+31bx=8a^{2}x+16a^{2}-x^{2}-x
Subtract x from both sides.
65b-4+31bx=8a^{2}x+16a^{2}-x^{2}-x-a
Subtract a from both sides.
65b+31bx=8a^{2}x+16a^{2}-x^{2}-x-a+4
Add 4 to both sides.
\left(65+31x\right)b=8a^{2}x+16a^{2}-x^{2}-x-a+4
Combine all terms containing b.
\left(31x+65\right)b=4-a+16a^{2}-x+8xa^{2}-x^{2}
The equation is in standard form.
\frac{\left(31x+65\right)b}{31x+65}=\frac{4-a+16a^{2}-x+8xa^{2}-x^{2}}{31x+65}
Divide both sides by 65+31x.
b=\frac{4-a+16a^{2}-x+8xa^{2}-x^{2}}{31x+65}
Dividing by 65+31x undoes the multiplication by 65+31x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}