Skip to main content
Solve for b (complex solution)
Tick mark Image
Solve for b
Tick mark Image
Solve for a (complex solution)
Tick mark Image
Solve for a
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}+5x+a+3b-x\left(x+2\right)+\left(x+2\right)\left(-2\right)=8a^{2}\left(x+2\right)-31b\left(x+2\right)
Multiply both sides of the equation by x+2.
2x^{2}+5x+a+3b-x^{2}-2x+\left(x+2\right)\left(-2\right)=8a^{2}\left(x+2\right)-31b\left(x+2\right)
Use the distributive property to multiply -x by x+2.
x^{2}+5x+a+3b-2x+\left(x+2\right)\left(-2\right)=8a^{2}\left(x+2\right)-31b\left(x+2\right)
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}+3x+a+3b+\left(x+2\right)\left(-2\right)=8a^{2}\left(x+2\right)-31b\left(x+2\right)
Combine 5x and -2x to get 3x.
x^{2}+3x+a+3b-2x-4=8a^{2}\left(x+2\right)-31b\left(x+2\right)
Use the distributive property to multiply x+2 by -2.
x^{2}+x+a+3b-4=8a^{2}\left(x+2\right)-31b\left(x+2\right)
Combine 3x and -2x to get x.
x^{2}+x+a+3b-4=8a^{2}x+16a^{2}-31b\left(x+2\right)
Use the distributive property to multiply 8a^{2} by x+2.
x^{2}+x+a+3b-4=8a^{2}x+16a^{2}-31bx-62b
Use the distributive property to multiply -31b by x+2.
x^{2}+x+a+3b-4+31bx=8a^{2}x+16a^{2}-62b
Add 31bx to both sides.
x^{2}+x+a+3b-4+31bx+62b=8a^{2}x+16a^{2}
Add 62b to both sides.
x^{2}+x+a+65b-4+31bx=8a^{2}x+16a^{2}
Combine 3b and 62b to get 65b.
x+a+65b-4+31bx=8a^{2}x+16a^{2}-x^{2}
Subtract x^{2} from both sides.
a+65b-4+31bx=8a^{2}x+16a^{2}-x^{2}-x
Subtract x from both sides.
65b-4+31bx=8a^{2}x+16a^{2}-x^{2}-x-a
Subtract a from both sides.
65b+31bx=8a^{2}x+16a^{2}-x^{2}-x-a+4
Add 4 to both sides.
\left(65+31x\right)b=8a^{2}x+16a^{2}-x^{2}-x-a+4
Combine all terms containing b.
\left(31x+65\right)b=4-a+16a^{2}-x+8xa^{2}-x^{2}
The equation is in standard form.
\frac{\left(31x+65\right)b}{31x+65}=\frac{4-a+16a^{2}-x+8xa^{2}-x^{2}}{31x+65}
Divide both sides by 65+31x.
b=\frac{4-a+16a^{2}-x+8xa^{2}-x^{2}}{31x+65}
Dividing by 65+31x undoes the multiplication by 65+31x.
2x^{2}+5x+a+3b-x\left(x+2\right)+\left(x+2\right)\left(-2\right)=8a^{2}\left(x+2\right)-31b\left(x+2\right)
Multiply both sides of the equation by x+2.
2x^{2}+5x+a+3b-x^{2}-2x+\left(x+2\right)\left(-2\right)=8a^{2}\left(x+2\right)-31b\left(x+2\right)
Use the distributive property to multiply -x by x+2.
x^{2}+5x+a+3b-2x+\left(x+2\right)\left(-2\right)=8a^{2}\left(x+2\right)-31b\left(x+2\right)
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}+3x+a+3b+\left(x+2\right)\left(-2\right)=8a^{2}\left(x+2\right)-31b\left(x+2\right)
Combine 5x and -2x to get 3x.
x^{2}+3x+a+3b-2x-4=8a^{2}\left(x+2\right)-31b\left(x+2\right)
Use the distributive property to multiply x+2 by -2.
x^{2}+x+a+3b-4=8a^{2}\left(x+2\right)-31b\left(x+2\right)
Combine 3x and -2x to get x.
x^{2}+x+a+3b-4=8a^{2}x+16a^{2}-31b\left(x+2\right)
Use the distributive property to multiply 8a^{2} by x+2.
x^{2}+x+a+3b-4=8a^{2}x+16a^{2}-31bx-62b
Use the distributive property to multiply -31b by x+2.
x^{2}+x+a+3b-4+31bx=8a^{2}x+16a^{2}-62b
Add 31bx to both sides.
x^{2}+x+a+3b-4+31bx+62b=8a^{2}x+16a^{2}
Add 62b to both sides.
x^{2}+x+a+65b-4+31bx=8a^{2}x+16a^{2}
Combine 3b and 62b to get 65b.
x+a+65b-4+31bx=8a^{2}x+16a^{2}-x^{2}
Subtract x^{2} from both sides.
a+65b-4+31bx=8a^{2}x+16a^{2}-x^{2}-x
Subtract x from both sides.
65b-4+31bx=8a^{2}x+16a^{2}-x^{2}-x-a
Subtract a from both sides.
65b+31bx=8a^{2}x+16a^{2}-x^{2}-x-a+4
Add 4 to both sides.
\left(65+31x\right)b=8a^{2}x+16a^{2}-x^{2}-x-a+4
Combine all terms containing b.
\left(31x+65\right)b=4-a+16a^{2}-x+8xa^{2}-x^{2}
The equation is in standard form.
\frac{\left(31x+65\right)b}{31x+65}=\frac{4-a+16a^{2}-x+8xa^{2}-x^{2}}{31x+65}
Divide both sides by 65+31x.
b=\frac{4-a+16a^{2}-x+8xa^{2}-x^{2}}{31x+65}
Dividing by 65+31x undoes the multiplication by 65+31x.