Solve for a (complex solution)
\left\{\begin{matrix}a=x+1\text{, }&x\neq -2\text{ and }b\neq -3\text{ and }b\neq 3\\a\neq -1\text{, }&b=-9\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}b=-9\text{, }&a\neq -1\\b\in \mathrm{C}\setminus -3,3\text{, }&x=a-1\text{ and }a\neq -1\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=x+1\text{, }&x\neq -2\text{ and }|b|\neq 3\\a\neq -1\text{, }&b=-9\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=-9\text{, }&a\neq -1\\b\in \mathrm{R}\setminus 3,-3\text{, }&x=a-1\text{ and }a\neq -1\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(b+3\right)\left(2x+4\right)-\left(a+1\right)\left(b+9\right)=\left(b-3\right)\left(x+2\right)
Variable a cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by \left(b-3\right)\left(a+1\right)\left(b+3\right), the least common multiple of b-3a+ab-3,b^{2}-9,b+3+ab+3a.
2bx+4b+6x+12-\left(a+1\right)\left(b+9\right)=\left(b-3\right)\left(x+2\right)
Use the distributive property to multiply b+3 by 2x+4.
2bx+4b+6x+12-\left(ab+9a+b+9\right)=\left(b-3\right)\left(x+2\right)
Use the distributive property to multiply a+1 by b+9.
2bx+4b+6x+12-ab-9a-b-9=\left(b-3\right)\left(x+2\right)
To find the opposite of ab+9a+b+9, find the opposite of each term.
2bx+3b+6x+12-ab-9a-9=\left(b-3\right)\left(x+2\right)
Combine 4b and -b to get 3b.
2bx+3b+6x+3-ab-9a=\left(b-3\right)\left(x+2\right)
Subtract 9 from 12 to get 3.
2bx+3b+6x+3-ab-9a=bx+2b-3x-6
Use the distributive property to multiply b-3 by x+2.
3b+6x+3-ab-9a=bx+2b-3x-6-2bx
Subtract 2bx from both sides.
3b+6x+3-ab-9a=-bx+2b-3x-6
Combine bx and -2bx to get -bx.
6x+3-ab-9a=-bx+2b-3x-6-3b
Subtract 3b from both sides.
6x+3-ab-9a=-bx-b-3x-6
Combine 2b and -3b to get -b.
3-ab-9a=-bx-b-3x-6-6x
Subtract 6x from both sides.
3-ab-9a=-bx-b-9x-6
Combine -3x and -6x to get -9x.
-ab-9a=-bx-b-9x-6-3
Subtract 3 from both sides.
-ab-9a=-bx-b-9x-9
Subtract 3 from -6 to get -9.
\left(-b-9\right)a=-bx-b-9x-9
Combine all terms containing a.
\left(-b-9\right)a=-bx-9x-b-9
The equation is in standard form.
\frac{\left(-b-9\right)a}{-b-9}=-\frac{\left(b+9\right)\left(x+1\right)}{-b-9}
Divide both sides by -b-9.
a=-\frac{\left(b+9\right)\left(x+1\right)}{-b-9}
Dividing by -b-9 undoes the multiplication by -b-9.
a=x+1
Divide -\left(1+x\right)\left(9+b\right) by -b-9.
a=x+1\text{, }a\neq -1
Variable a cannot be equal to -1.
\left(b+3\right)\left(2x+4\right)-\left(a+1\right)\left(b+9\right)=\left(b-3\right)\left(x+2\right)
Variable b cannot be equal to any of the values -3,3 since division by zero is not defined. Multiply both sides of the equation by \left(b-3\right)\left(a+1\right)\left(b+3\right), the least common multiple of b-3a+ab-3,b^{2}-9,b+3+ab+3a.
2bx+4b+6x+12-\left(a+1\right)\left(b+9\right)=\left(b-3\right)\left(x+2\right)
Use the distributive property to multiply b+3 by 2x+4.
2bx+4b+6x+12-\left(ab+9a+b+9\right)=\left(b-3\right)\left(x+2\right)
Use the distributive property to multiply a+1 by b+9.
2bx+4b+6x+12-ab-9a-b-9=\left(b-3\right)\left(x+2\right)
To find the opposite of ab+9a+b+9, find the opposite of each term.
2bx+3b+6x+12-ab-9a-9=\left(b-3\right)\left(x+2\right)
Combine 4b and -b to get 3b.
2bx+3b+6x+3-ab-9a=\left(b-3\right)\left(x+2\right)
Subtract 9 from 12 to get 3.
2bx+3b+6x+3-ab-9a=bx+2b-3x-6
Use the distributive property to multiply b-3 by x+2.
2bx+3b+6x+3-ab-9a-bx=2b-3x-6
Subtract bx from both sides.
bx+3b+6x+3-ab-9a=2b-3x-6
Combine 2bx and -bx to get bx.
bx+3b+6x+3-ab-9a-2b=-3x-6
Subtract 2b from both sides.
bx+b+6x+3-ab-9a=-3x-6
Combine 3b and -2b to get b.
bx+b+3-ab-9a=-3x-6-6x
Subtract 6x from both sides.
bx+b+3-ab-9a=-9x-6
Combine -3x and -6x to get -9x.
bx+b-ab-9a=-9x-6-3
Subtract 3 from both sides.
bx+b-ab-9a=-9x-9
Subtract 3 from -6 to get -9.
bx+b-ab=-9x-9+9a
Add 9a to both sides.
\left(x+1-a\right)b=-9x-9+9a
Combine all terms containing b.
\left(x-a+1\right)b=-9x+9a-9
The equation is in standard form.
\frac{\left(x-a+1\right)b}{x-a+1}=\frac{-9x+9a-9}{x-a+1}
Divide both sides by 1+x-a.
b=\frac{-9x+9a-9}{x-a+1}
Dividing by 1+x-a undoes the multiplication by 1+x-a.
b=-9
Divide -9-9x+9a by 1+x-a.
\left(b+3\right)\left(2x+4\right)-\left(a+1\right)\left(b+9\right)=\left(b-3\right)\left(x+2\right)
Variable a cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by \left(b-3\right)\left(a+1\right)\left(b+3\right), the least common multiple of b-3a+ab-3,b^{2}-9,b+3+ab+3a.
2bx+4b+6x+12-\left(a+1\right)\left(b+9\right)=\left(b-3\right)\left(x+2\right)
Use the distributive property to multiply b+3 by 2x+4.
2bx+4b+6x+12-\left(ab+9a+b+9\right)=\left(b-3\right)\left(x+2\right)
Use the distributive property to multiply a+1 by b+9.
2bx+4b+6x+12-ab-9a-b-9=\left(b-3\right)\left(x+2\right)
To find the opposite of ab+9a+b+9, find the opposite of each term.
2bx+3b+6x+12-ab-9a-9=\left(b-3\right)\left(x+2\right)
Combine 4b and -b to get 3b.
2bx+3b+6x+3-ab-9a=\left(b-3\right)\left(x+2\right)
Subtract 9 from 12 to get 3.
2bx+3b+6x+3-ab-9a=bx+2b-3x-6
Use the distributive property to multiply b-3 by x+2.
3b+6x+3-ab-9a=bx+2b-3x-6-2bx
Subtract 2bx from both sides.
3b+6x+3-ab-9a=-bx+2b-3x-6
Combine bx and -2bx to get -bx.
6x+3-ab-9a=-bx+2b-3x-6-3b
Subtract 3b from both sides.
6x+3-ab-9a=-bx-b-3x-6
Combine 2b and -3b to get -b.
3-ab-9a=-bx-b-3x-6-6x
Subtract 6x from both sides.
3-ab-9a=-bx-b-9x-6
Combine -3x and -6x to get -9x.
-ab-9a=-bx-b-9x-6-3
Subtract 3 from both sides.
-ab-9a=-bx-b-9x-9
Subtract 3 from -6 to get -9.
\left(-b-9\right)a=-bx-b-9x-9
Combine all terms containing a.
\left(-b-9\right)a=-bx-9x-b-9
The equation is in standard form.
\frac{\left(-b-9\right)a}{-b-9}=-\frac{\left(b+9\right)\left(x+1\right)}{-b-9}
Divide both sides by -b-9.
a=-\frac{\left(b+9\right)\left(x+1\right)}{-b-9}
Dividing by -b-9 undoes the multiplication by -b-9.
a=x+1
Divide -\left(1+x\right)\left(9+b\right) by -b-9.
a=x+1\text{, }a\neq -1
Variable a cannot be equal to -1.
\left(b+3\right)\left(2x+4\right)-\left(a+1\right)\left(b+9\right)=\left(b-3\right)\left(x+2\right)
Variable b cannot be equal to any of the values -3,3 since division by zero is not defined. Multiply both sides of the equation by \left(b-3\right)\left(a+1\right)\left(b+3\right), the least common multiple of b-3a+ab-3,b^{2}-9,b+3+ab+3a.
2bx+4b+6x+12-\left(a+1\right)\left(b+9\right)=\left(b-3\right)\left(x+2\right)
Use the distributive property to multiply b+3 by 2x+4.
2bx+4b+6x+12-\left(ab+9a+b+9\right)=\left(b-3\right)\left(x+2\right)
Use the distributive property to multiply a+1 by b+9.
2bx+4b+6x+12-ab-9a-b-9=\left(b-3\right)\left(x+2\right)
To find the opposite of ab+9a+b+9, find the opposite of each term.
2bx+3b+6x+12-ab-9a-9=\left(b-3\right)\left(x+2\right)
Combine 4b and -b to get 3b.
2bx+3b+6x+3-ab-9a=\left(b-3\right)\left(x+2\right)
Subtract 9 from 12 to get 3.
2bx+3b+6x+3-ab-9a=bx+2b-3x-6
Use the distributive property to multiply b-3 by x+2.
2bx+3b+6x+3-ab-9a-bx=2b-3x-6
Subtract bx from both sides.
bx+3b+6x+3-ab-9a=2b-3x-6
Combine 2bx and -bx to get bx.
bx+3b+6x+3-ab-9a-2b=-3x-6
Subtract 2b from both sides.
bx+b+6x+3-ab-9a=-3x-6
Combine 3b and -2b to get b.
bx+b+3-ab-9a=-3x-6-6x
Subtract 6x from both sides.
bx+b+3-ab-9a=-9x-6
Combine -3x and -6x to get -9x.
bx+b-ab-9a=-9x-6-3
Subtract 3 from both sides.
bx+b-ab-9a=-9x-9
Subtract 3 from -6 to get -9.
bx+b-ab=-9x-9+9a
Add 9a to both sides.
\left(x+1-a\right)b=-9x-9+9a
Combine all terms containing b.
\left(x-a+1\right)b=-9x+9a-9
The equation is in standard form.
\frac{\left(x-a+1\right)b}{x-a+1}=\frac{-9x+9a-9}{x-a+1}
Divide both sides by 1+x-a.
b=\frac{-9x+9a-9}{x-a+1}
Dividing by 1+x-a undoes the multiplication by 1+x-a.
b=-9
Divide -9-9x+9a by 1+x-a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}