Evaluate
\frac{7y}{4}-\frac{x}{2}
Expand
\frac{7y}{4}-\frac{x}{2}
Share
Copied to clipboard
\frac{2x+3y}{4}-\left(x-y\right)
Divide each term of 2x-2y by 2 to get x-y.
\frac{2x+3y}{4}-x-\left(-y\right)
To find the opposite of x-y, find the opposite of each term.
\frac{2x+3y}{4}-x+y
The opposite of -y is y.
\frac{2x+3y}{4}+\frac{4\left(-x+y\right)}{4}
To add or subtract expressions, expand them to make their denominators the same. Multiply -x+y times \frac{4}{4}.
\frac{2x+3y+4\left(-x+y\right)}{4}
Since \frac{2x+3y}{4} and \frac{4\left(-x+y\right)}{4} have the same denominator, add them by adding their numerators.
\frac{2x+3y-4x+4y}{4}
Do the multiplications in 2x+3y+4\left(-x+y\right).
\frac{-2x+7y}{4}
Combine like terms in 2x+3y-4x+4y.
\frac{2x+3y}{4}-\left(x-y\right)
Divide each term of 2x-2y by 2 to get x-y.
\frac{2x+3y}{4}-x-\left(-y\right)
To find the opposite of x-y, find the opposite of each term.
\frac{2x+3y}{4}-x+y
The opposite of -y is y.
\frac{2x+3y}{4}+\frac{4\left(-x+y\right)}{4}
To add or subtract expressions, expand them to make their denominators the same. Multiply -x+y times \frac{4}{4}.
\frac{2x+3y+4\left(-x+y\right)}{4}
Since \frac{2x+3y}{4} and \frac{4\left(-x+y\right)}{4} have the same denominator, add them by adding their numerators.
\frac{2x+3y-4x+4y}{4}
Do the multiplications in 2x+3y+4\left(-x+y\right).
\frac{-2x+7y}{4}
Combine like terms in 2x+3y-4x+4y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}