Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2x+3}{\left(x-2\right)\left(x+3\right)}+\frac{x-7}{x-2}-\frac{3x-8}{x+3}
Factor x^{2}+x-6.
\frac{2x+3}{\left(x-2\right)\left(x+3\right)}+\frac{\left(x-7\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}-\frac{3x-8}{x+3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+3\right) and x-2 is \left(x-2\right)\left(x+3\right). Multiply \frac{x-7}{x-2} times \frac{x+3}{x+3}.
\frac{2x+3+\left(x-7\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}-\frac{3x-8}{x+3}
Since \frac{2x+3}{\left(x-2\right)\left(x+3\right)} and \frac{\left(x-7\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{2x+3+x^{2}+3x-7x-21}{\left(x-2\right)\left(x+3\right)}-\frac{3x-8}{x+3}
Do the multiplications in 2x+3+\left(x-7\right)\left(x+3\right).
\frac{-2x-18+x^{2}}{\left(x-2\right)\left(x+3\right)}-\frac{3x-8}{x+3}
Combine like terms in 2x+3+x^{2}+3x-7x-21.
\frac{-2x-18+x^{2}}{\left(x-2\right)\left(x+3\right)}-\frac{\left(3x-8\right)\left(x-2\right)}{\left(x-2\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+3\right) and x+3 is \left(x-2\right)\left(x+3\right). Multiply \frac{3x-8}{x+3} times \frac{x-2}{x-2}.
\frac{-2x-18+x^{2}-\left(3x-8\right)\left(x-2\right)}{\left(x-2\right)\left(x+3\right)}
Since \frac{-2x-18+x^{2}}{\left(x-2\right)\left(x+3\right)} and \frac{\left(3x-8\right)\left(x-2\right)}{\left(x-2\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-2x-18+x^{2}-3x^{2}+6x+8x-16}{\left(x-2\right)\left(x+3\right)}
Do the multiplications in -2x-18+x^{2}-\left(3x-8\right)\left(x-2\right).
\frac{12x-34-2x^{2}}{\left(x-2\right)\left(x+3\right)}
Combine like terms in -2x-18+x^{2}-3x^{2}+6x+8x-16.
\frac{12x-34-2x^{2}}{x^{2}+x-6}
Expand \left(x-2\right)\left(x+3\right).
\frac{2x+3}{\left(x-2\right)\left(x+3\right)}+\frac{x-7}{x-2}-\frac{3x-8}{x+3}
Factor x^{2}+x-6.
\frac{2x+3}{\left(x-2\right)\left(x+3\right)}+\frac{\left(x-7\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}-\frac{3x-8}{x+3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+3\right) and x-2 is \left(x-2\right)\left(x+3\right). Multiply \frac{x-7}{x-2} times \frac{x+3}{x+3}.
\frac{2x+3+\left(x-7\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}-\frac{3x-8}{x+3}
Since \frac{2x+3}{\left(x-2\right)\left(x+3\right)} and \frac{\left(x-7\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{2x+3+x^{2}+3x-7x-21}{\left(x-2\right)\left(x+3\right)}-\frac{3x-8}{x+3}
Do the multiplications in 2x+3+\left(x-7\right)\left(x+3\right).
\frac{-2x-18+x^{2}}{\left(x-2\right)\left(x+3\right)}-\frac{3x-8}{x+3}
Combine like terms in 2x+3+x^{2}+3x-7x-21.
\frac{-2x-18+x^{2}}{\left(x-2\right)\left(x+3\right)}-\frac{\left(3x-8\right)\left(x-2\right)}{\left(x-2\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+3\right) and x+3 is \left(x-2\right)\left(x+3\right). Multiply \frac{3x-8}{x+3} times \frac{x-2}{x-2}.
\frac{-2x-18+x^{2}-\left(3x-8\right)\left(x-2\right)}{\left(x-2\right)\left(x+3\right)}
Since \frac{-2x-18+x^{2}}{\left(x-2\right)\left(x+3\right)} and \frac{\left(3x-8\right)\left(x-2\right)}{\left(x-2\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-2x-18+x^{2}-3x^{2}+6x+8x-16}{\left(x-2\right)\left(x+3\right)}
Do the multiplications in -2x-18+x^{2}-\left(3x-8\right)\left(x-2\right).
\frac{12x-34-2x^{2}}{\left(x-2\right)\left(x+3\right)}
Combine like terms in -2x-18+x^{2}-3x^{2}+6x+8x-16.
\frac{12x-34-2x^{2}}{x^{2}+x-6}
Expand \left(x-2\right)\left(x+3\right).