Solve for x
x = -\frac{29}{11} = -2\frac{7}{11} \approx -2.636363636
Graph
Share
Copied to clipboard
21\left(2x+3\right)-15\left(3x-1\right)=7\left(7-2x\right)
Multiply both sides of the equation by 105, the least common multiple of 5,7,15.
42x+63-15\left(3x-1\right)=7\left(7-2x\right)
Use the distributive property to multiply 21 by 2x+3.
42x+63-45x+15=7\left(7-2x\right)
Use the distributive property to multiply -15 by 3x-1.
-3x+63+15=7\left(7-2x\right)
Combine 42x and -45x to get -3x.
-3x+78=7\left(7-2x\right)
Add 63 and 15 to get 78.
-3x+78=49-14x
Use the distributive property to multiply 7 by 7-2x.
-3x+78+14x=49
Add 14x to both sides.
11x+78=49
Combine -3x and 14x to get 11x.
11x=49-78
Subtract 78 from both sides.
11x=-29
Subtract 78 from 49 to get -29.
x=\frac{-29}{11}
Divide both sides by 11.
x=-\frac{29}{11}
Fraction \frac{-29}{11} can be rewritten as -\frac{29}{11} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}