Solve for x
x = -\frac{19}{4} = -4\frac{3}{4} = -4.75
Graph
Share
Copied to clipboard
3\left(2x+3\right)-2\left(x-5\right)=0
Multiply both sides of the equation by 12, the least common multiple of 4,6.
6x+9-2\left(x-5\right)=0
Use the distributive property to multiply 3 by 2x+3.
6x+9-2x+10=0
Use the distributive property to multiply -2 by x-5.
4x+9+10=0
Combine 6x and -2x to get 4x.
4x+19=0
Add 9 and 10 to get 19.
4x=-19
Subtract 19 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-19}{4}
Divide both sides by 4.
x=-\frac{19}{4}
Fraction \frac{-19}{4} can be rewritten as -\frac{19}{4} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}