Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(8x+12\right)\left(2x+3\right)+\left(8x-12\right)\left(2x-3\right)=17\left(2x-3\right)\left(2x+3\right)
Variable x cannot be equal to any of the values -\frac{3}{2},\frac{3}{2} since division by zero is not defined. Multiply both sides of the equation by 4\left(2x-3\right)\left(2x+3\right), the least common multiple of 2x-3,2x+3,4.
16x^{2}+48x+36+\left(8x-12\right)\left(2x-3\right)=17\left(2x-3\right)\left(2x+3\right)
Use the distributive property to multiply 8x+12 by 2x+3 and combine like terms.
16x^{2}+48x+36+16x^{2}-48x+36=17\left(2x-3\right)\left(2x+3\right)
Use the distributive property to multiply 8x-12 by 2x-3 and combine like terms.
32x^{2}+48x+36-48x+36=17\left(2x-3\right)\left(2x+3\right)
Combine 16x^{2} and 16x^{2} to get 32x^{2}.
32x^{2}+36+36=17\left(2x-3\right)\left(2x+3\right)
Combine 48x and -48x to get 0.
32x^{2}+72=17\left(2x-3\right)\left(2x+3\right)
Add 36 and 36 to get 72.
32x^{2}+72=\left(34x-51\right)\left(2x+3\right)
Use the distributive property to multiply 17 by 2x-3.
32x^{2}+72=68x^{2}-153
Use the distributive property to multiply 34x-51 by 2x+3 and combine like terms.
32x^{2}+72-68x^{2}=-153
Subtract 68x^{2} from both sides.
-36x^{2}+72=-153
Combine 32x^{2} and -68x^{2} to get -36x^{2}.
-36x^{2}=-153-72
Subtract 72 from both sides.
-36x^{2}=-225
Subtract 72 from -153 to get -225.
x^{2}=\frac{-225}{-36}
Divide both sides by -36.
x^{2}=\frac{25}{4}
Reduce the fraction \frac{-225}{-36} to lowest terms by extracting and canceling out -9.
x=\frac{5}{2} x=-\frac{5}{2}
Take the square root of both sides of the equation.
\left(8x+12\right)\left(2x+3\right)+\left(8x-12\right)\left(2x-3\right)=17\left(2x-3\right)\left(2x+3\right)
Variable x cannot be equal to any of the values -\frac{3}{2},\frac{3}{2} since division by zero is not defined. Multiply both sides of the equation by 4\left(2x-3\right)\left(2x+3\right), the least common multiple of 2x-3,2x+3,4.
16x^{2}+48x+36+\left(8x-12\right)\left(2x-3\right)=17\left(2x-3\right)\left(2x+3\right)
Use the distributive property to multiply 8x+12 by 2x+3 and combine like terms.
16x^{2}+48x+36+16x^{2}-48x+36=17\left(2x-3\right)\left(2x+3\right)
Use the distributive property to multiply 8x-12 by 2x-3 and combine like terms.
32x^{2}+48x+36-48x+36=17\left(2x-3\right)\left(2x+3\right)
Combine 16x^{2} and 16x^{2} to get 32x^{2}.
32x^{2}+36+36=17\left(2x-3\right)\left(2x+3\right)
Combine 48x and -48x to get 0.
32x^{2}+72=17\left(2x-3\right)\left(2x+3\right)
Add 36 and 36 to get 72.
32x^{2}+72=\left(34x-51\right)\left(2x+3\right)
Use the distributive property to multiply 17 by 2x-3.
32x^{2}+72=68x^{2}-153
Use the distributive property to multiply 34x-51 by 2x+3 and combine like terms.
32x^{2}+72-68x^{2}=-153
Subtract 68x^{2} from both sides.
-36x^{2}+72=-153
Combine 32x^{2} and -68x^{2} to get -36x^{2}.
-36x^{2}+72+153=0
Add 153 to both sides.
-36x^{2}+225=0
Add 72 and 153 to get 225.
x=\frac{0±\sqrt{0^{2}-4\left(-36\right)\times 225}}{2\left(-36\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -36 for a, 0 for b, and 225 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-36\right)\times 225}}{2\left(-36\right)}
Square 0.
x=\frac{0±\sqrt{144\times 225}}{2\left(-36\right)}
Multiply -4 times -36.
x=\frac{0±\sqrt{32400}}{2\left(-36\right)}
Multiply 144 times 225.
x=\frac{0±180}{2\left(-36\right)}
Take the square root of 32400.
x=\frac{0±180}{-72}
Multiply 2 times -36.
x=-\frac{5}{2}
Now solve the equation x=\frac{0±180}{-72} when ± is plus. Reduce the fraction \frac{180}{-72} to lowest terms by extracting and canceling out 36.
x=\frac{5}{2}
Now solve the equation x=\frac{0±180}{-72} when ± is minus. Reduce the fraction \frac{-180}{-72} to lowest terms by extracting and canceling out 36.
x=-\frac{5}{2} x=\frac{5}{2}
The equation is now solved.