Solve for x
x=-\frac{7}{12}\approx -0.583333333
Graph
Share
Copied to clipboard
\left(5x+3\right)\left(2x+3\right)=\left(2x+1\right)\left(5x+2\right)
Variable x cannot be equal to any of the values -\frac{3}{5},-\frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by \left(2x+1\right)\left(5x+3\right), the least common multiple of 2x+1,5x+3.
10x^{2}+21x+9=\left(2x+1\right)\left(5x+2\right)
Use the distributive property to multiply 5x+3 by 2x+3 and combine like terms.
10x^{2}+21x+9=10x^{2}+9x+2
Use the distributive property to multiply 2x+1 by 5x+2 and combine like terms.
10x^{2}+21x+9-10x^{2}=9x+2
Subtract 10x^{2} from both sides.
21x+9=9x+2
Combine 10x^{2} and -10x^{2} to get 0.
21x+9-9x=2
Subtract 9x from both sides.
12x+9=2
Combine 21x and -9x to get 12x.
12x=2-9
Subtract 9 from both sides.
12x=-7
Subtract 9 from 2 to get -7.
x=\frac{-7}{12}
Divide both sides by 12.
x=-\frac{7}{12}
Fraction \frac{-7}{12} can be rewritten as -\frac{7}{12} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}