Solve for x
x = \frac{21}{2} = 10\frac{1}{2} = 10.5
Graph
Share
Copied to clipboard
5\left(2x+3\right)-2\left(x+2\right)=10x-10
Multiply both sides of the equation by 10, the least common multiple of 2,5.
10x+15-2\left(x+2\right)=10x-10
Use the distributive property to multiply 5 by 2x+3.
10x+15-2x-4=10x-10
Use the distributive property to multiply -2 by x+2.
8x+15-4=10x-10
Combine 10x and -2x to get 8x.
8x+11=10x-10
Subtract 4 from 15 to get 11.
8x+11-10x=-10
Subtract 10x from both sides.
-2x+11=-10
Combine 8x and -10x to get -2x.
-2x=-10-11
Subtract 11 from both sides.
-2x=-21
Subtract 11 from -10 to get -21.
x=\frac{-21}{-2}
Divide both sides by -2.
x=\frac{21}{2}
Fraction \frac{-21}{-2} can be simplified to \frac{21}{2} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}